

School of Engineering and Physical Sciences Department of Mathematics and Physics

Course Name	Introduction to Nanotechnology
Course Code	РНҮ 380
Course Credit Hours	03
Prerequisite	PHY 250
Course Objective	The objective of this course is to introduce the basic physics related to nanoscale materials, as well as their fabrication and state-of-the-art characterization tools and techniques.
Course Description	Students become familiar with fundamental physics related to nanoscale materials and systems. Students learn about fabrication of nanomaterials using top-down and bottom-up techniques. They also learn about theoretical aspects of different tools and techniques used for nanoscale material characterization such as electron microscopy, probe microscopy, and spectroscopy. Students also become familiar with the application of nanomaterials to a wide range of disciplines, spanning from solar cells to drug delivery.
Method(s) of Instruction(s)	Interactive lectures, simulations

COURSE CONTENT BY TOPIC

MechanismModule #3Nano Scale Materials : Clusters, Particles, Wires, Fil Fullerenes and Nanotubes, Nanomaterials in NatureModule #4Fabrication Methods: Top-Down Methods: Mechani Fabrication, Lithographic Methods; Bottom-Up Methods: C Assisted GrowthModule #5Characterization Techniques: Scanning Electron Micros Atomic Force Microscopy, Scanning Tunneling Microscopy	ffect zation, Capillarity, Pair Potential, Surface					
Module #2Energy at the Nanoscale: Surface Energy, Surface Stabil Energy of Low – Index Crystals, Surface Energy of Nat MechanismModule #3Nano Scale Materials : Clusters, Particles, Wires, Fil Fullerenes and Nanotubes, Nanomaterials in NatureModule #4Fabrication Methods: Top-Down Methods: Mechanis 	zation, Capillarity, Pair Potential, Surface					
Energy of Low – Index Crystals, Surface Energy of Nat MechanismModule #3Nano Scale Materials : Clusters, Particles, Wires, Fil Fullerenes and Nanotubes, Nanomaterials in NatureModule #4Fabrication Methods: Top-Down Methods: Mechani Fabrication, Lithographic Methods; Bottom-Up Methods: C Assisted GrowthModule #5Characterization Techniques: Scanning Electron Micros Atomic Force Microscopy, Scanning Tunneling Microscopy						
Mechanism Module #3 Nano Scale Materials : Clusters, Particles, Wires, Fil Fullerenes and Nanotubes, Nanomaterials in Nature Module #4 Fabrication Methods: Top-Down Methods: Mechani Fabrication, Lithographic Methods; Bottom-Up Methods: C Assisted Growth Module #5 Characterization Techniques: Scanning Electron Micros Atomic Force Microscopy, Scanning Tunneling Microscopy	oparticles, Surface Energy Minimization					
Fullerenes and Nanotubes, Nanomaterials in Nature Module #4 Fabrication Methods: Top-Down Methods: Mechani Fabrication, Lithographic Methods; Bottom-Up Methods: C Assisted Growth Module #5 Characterization Techniques: Scanning Electron Micross Atomic Force Microscopy, Scanning Tunneling Microscopy	Energy of Low – Index Crystals, Surface Energy of Nanoparticles, Surface Energy Minimization Mechanism					
Module #5 Characterization Techniques: Scanning Electron Micros Atomic Force Microscopy, Scanning Tunneling Microscopy	ns, Coatings, Porous Materials, Carbon					
Fabrication, Lithographic Methods; Bottom-Up Methods: C Assisted Growth Module #5 Characterization Techniques: Scanning Electron Micros Atomic Force Microscopy, Scanning Tunneling Microscopy	al, Thermal, High Energy, Chemical					
Module #5 Characterization Techniques: Scanning Electron Micros Atomic Force Microscopy, Scanning Tunneling Microscopy						
Atomic Force Microscopy, Scanning Tunneling Microscopy						
Madula #(Application of Nanotechnology, Single Negagariale Davi	1					
Module #6 Application of Nanotechnology: Single Nanoparticle Devi						
Solar Cells, Nanocatalyst, Biomimetics, Nanocomposite, Na	es, Targeted Drug Delivery, Quantum Dot					
Actual contact hours: Lecture: 3 hours per week; 36 hours per semester	es, Targeted Drug Delivery, Quantum Dot nosensors and Related Applications					

TEXTBOOK REQUIREMENT

- 1. Introduction to Nanoscience and Nanotechnology, Chris Binns
- 2. Introduction to Nanoscience and Nanotechnology, Gabor L. Hornyak, Harry F. Tibbals, Joydeep Dutta, John J. Moore

ASSESSMENT STRATEGY AND GRADING SCHEME

NSU's grading and performance evaluation policies will be followed in assigning your grade. Please note that all final grades are subject to departmental review and approval. A guideline of course assessment is as follows-

Class Attendance	Quiz	Assignments/Projects	Midterm	Final	
5%	15%	15%	30%	35%	

MAPPING OF COURSE OUTCOMES

CLO-#	Outcome Types	Bloom's Taxonomy level (C- Cognitive, A- Affective, P- Psychomotor)	Delivery Method	Assessm	ent Tools
CLO #1	Describe materials and their properties at the atomic and nanometer level.	C2, P2	Lecture and discussion	Quiz	
CLO #2	Classify nanomaterials based on dimensionality, and explain the effect of surface to volume ratio with reducing size.	C2, C4	Lecture and discussion	Quiz	Midterm Exam
CLO #3	Explain the effect of the reduction in dimensionality and its relationship to material properties.	C2, P3	Lecture and discussion	Quiz	
CLO #4	Explain the top down and bottom up approaches for nanomaterial fabrication.	C2, P3	Lecture and discussion	Quiz	Final Exam
CLO #5	Analyze the tools and techniques used for nanomaterial characterization.	C4, P3	Lecture and discussion	Quiz	
CLO #6	Apply the key concepts in physics, chemistry, biology, and engineering to the field of nanotechnology.	C3, P4	Lecture and discussion	Projects and Final Exam	