

School of Engineering and Physical Sciences Department of Mathematics and Physics

Course Name	Biomedical Physics		
Course Code	PHY 370		
Course Credit Hours	3		
Prerequisite	PHY 108, MAT 350		
Course Objective (Maximum two sentences, preferably one)	This course is designed to introduce the physics of living systems and provide interpretation of experimental observations of various biomedical systems.		
Course Description	Students understand how physics principles functioning in living systems, starting at the molecular, via the cellular, to the organ and system levels. They develop the basic concept in medical physics. They learn the principles of physics related to medical imaging and radiation therapy.		
Method(s) of Instruction(s)	Interactive lectures, simulations		

COURSE CONTENT BY TOPIC

Pressure and Motion of Fluids, Heat and Temperature, Electricity and Magnetism in Human Body, Optics and the Eye	
Structure of Macromolecules: Atomic and Molecular forces and behavior of macromolecules, structure determination, Properties and Structure of Cell & Nucleic Acid, Theories and Models of Cell Membrane	
Nervous System: Electrical activity of nervous system, Huxley-Hodgkin model, Neurotransmitters, Action potential, Regulatory Processes in Visual Systems, Visual Defects and Refractive Anomalies, Myopia and Hypermetropia, EEG, EMG, EOG, NCV	
e #4 Cardio-vascular System: General Design, Main Functions and Circulation, Cardiac Pump. Mechanical Work of the Heart. Heart Chamber, Valves, and Sounds, Haemodynamics, Blood Fle and Volume Dynamics, Blood Pressure, ECG, Einthoven's Triangle, Heart Disorders, Pacemake Defibrillators	
Aspects of Medical Imaging and Technology: Principles of Operation, 2D Fourier Image, Resolution and Design Tradeoffs in Projection, Tomography, Ultrasound, PET and MRI	
Radiobiology: Use of Ionizing Radiation in Diagnosis and Therapy, Radiation Safety, Effects on Living Cells and Organisms, Radiopharmaceuticals, Radiotherapy, Radiation Dosimetry	
-	

TEXTBOOK REQUIREMENT

- 1. Medical Physics: John R. Cameron
- Medical Physics and Biomedical Engineering: B.H Brown, R.H Smallwood, D.C. Barber, P.V Lawford, D.R Hose, Churchill Livingstone
- 3. Comprehensive Biomedical Physics: Anders Brahme

ASSESSMENT STRATEGY AND GRADING SCHEME

NSU's grading and performance evaluation policies will be followed in assigning your grade. Please note that all final grades are subject to departmental review and approval. A guideline of course assessment is as follows-

Class Attendance	Assignments/Project	roject Quiz Midterm		Final
5%	10%	20%	30%	35%

MAPPING OF COURSE OUTCOMES

CLO-#	Outcome Types	Bloom's Taxonomy level (C- Cognitive, A- Affective, P- Psychomotor)	Delivery Method	Assessmen	t Tools
CLO#1	Understand the physical principles of the functioning of different parts of human body.	C2, P2	Lecture, Demonstration and Discussion	Quiz, Assignment	
CLO#2	Explain basic atom, binding theory, and electron configuration and observe relationship to proteins and amino acids.	C2, P3	Lecture, Demonstration and Discussion	Quiz, Assignment	Midterm Exam
CLO#3	Describe the basics of nervous system and its electrical conduction properties and related measuring techniques.	C2, P2	Lecture, Demonstration and Discussion	Quiz, Assignment	
CLO#4	Explain the basics of cardio- vascular system and its electrical interactions and related measuring techniques.	C2, P3	Lecture, Demonstration and Discussion	Quiz, Assignment	Final Exam
CLO#5	Apply the physical principles in variety of biomedical imaging modalities.	C3, P3	Lecture, Discussion	Quiz, Assignment	
CLO#6	Explain the physical principles behind radiation technology in healthcare, safety, and relevant applications.	C2, P2	Lecture, Discussion	Quiz, Assignment	