

North South University Department of Mathematics and Physics

MAT350: Engineering Mathematics

Course Name: Course Code: Credit Hours : Pre-requisite : Term	Engineering Mathematics MAT 350 3 Credits MAT 130 Spring 2024
Instructor Office Email: Office Time	:
Course Short Description:	This course is intended for Engineering students who require a working knowledge of differential equations; included are techniques and applications of ordinary differential equations in engineering problems with some elements of scientific computing.
Course Objectives	 To classify the different types of differential equations and find the appropriate analytical tools and techniques for finding the solutions of the first order and the second order ordinary differential equations. To create and analyze mathematical models using the first order and the second order ordinary differential equations. To demonstrate students' understanding of how physical phenomena are modeled by system of differential equations and investigate the solution methods. To develop the ability to apply Fourier series and Fourier Integrals to significant applied problems.
Course Learning Outcomes:	 Upon successful completion of this course, students will be able to: (CO-1) Classify the type of a given differential equation and find the appropriate analytical techniques for finding the solutions of the first order and the second order ordinary differential equations. (CO-2) Formulate and analyze mathematical models using the first order and the second order ordinary differential equations. (CO-3) Solve linear differential equations using different tools, like the Laplace transform technique, power series method; and identify their applications. (CO-4) Demonstrate their understanding of how physical phenomena are modeled by system of differential equations and investigate the solution methods. (CO-5) Develop the ability to apply Fourier series and Fourier Integrals to significant applied problems.

Course 1. First Order Ordinary Differential Equations:

Contents:

Introduction to Ordinary Differential Equations (ODEs), mathematical modeling with ODEs, Separable and Exact ODE, Linear ODE, Bernoulli equation.

2. Second-Order Linear ODEs: Homogeneous Linear ODEs of Second Order, Homogeneous Linear ODEs with Constant Coefficients, Euler–Cauchy Equations, Existence and Uniqueness of Solutions. Wronskian, Non-homogeneous ODEs, Modeling: Mass–Spring System, Electric Circuits, Resonance, Solution by Variation of Parameters.

3. **Systems of ODE:** System of ODEs, Phase plane method, Nonhomogeneous Linear Systems of ODEs.

4. **Series Solutions of ODEs:** Power series method, Extended Power Series Method, Bessel's Equation. Bessel Functions and general solution.

5. Laplace Transformation

Laplace Transformation and its inverse, linearity and shifting, Laplace transformations of derivatives and integrals, Initial Value Problems, unit step function, delta function and t-shifting.

6. Fourier Series and Fourier Functions

Periodic function and Fourier Series, Fourier coefficients and applications. Even and odd functions, half range expression, Fourier integrals and transforms.

Mapping of Course Outcomes

#	Course Outcomes (CO)	Bloom's taxonomy domain/level	Delivery methods and activities	Assessment tools
		(C: Cognitive P: Psychomotor		
		A: Affective)		
CO-1	Classify the type of a given differential equation and find the appropriate analytical techniques for finding the solutions of the first order and the second order ordinary differential equations.	C2	Lecture, Video Discussion	Quiz, Assignment
CO-2	Apply and analyze mathematical models using the first order and the second order ordinary differential equations.	C3, C4, P2	Lecture, in- class group discussion, Videos	In class assessment, Midterm exam, Assignment
CO-3	Solve linear differential equations using different tools, like the Laplace transform technique, power series method; and identify their applications.	C2, C3, P2	Lecture, Discussion	Class work, Quiz, Assignment, Midterm Exam, Final Exam
CO-4	Demonstrate their understanding of how physical phenomena are modeled by system of differential equations and investigate the solution methods.	C4, P2	Lecture, Video, Discussion	Demonstration, Quiz, Assignment, Final Exam
CO-5	Develop the ability to apply Fourier series and Fourier Integrals to significant applied problems.	C2, C3, P2	Lecture Video Demonstration	Assignment, Final Exam

Note: C2, C3, C4, and P2 indicate different subdomains of Bloom's Taxonomy. Please visit departmental website for details.

Marks Distribution:

Attendance	10%
Regular Quizzes	20% (4 quizzes & best 3 quizzes will count for marks
Mid-term	25% (Duration of the mid-term exam will be 70 minutes).
Final Exam	35% (Duration of the final exam will be 01 hour & 30 minutes).
Assignment	10% (02 assignments)
Total Marks	100%

Grading

Policies:	As per NSU Grading Policy		
Important Dates:	Midterm exam	TBA	
	Final Exam	According to NSU Schedule.	

Reference Books:

- 1. A First Course in Differential Equations with Modeling and Applications, (10th Edition), Author-Dennis G. Zill.
- 2. Advanced Engineering Mathematics (10th Edition)- Author: Erwin Kreyszig

Special Instructions:

- (a) Submit the assignments in recommended date. No late submission will be accepted. Make a photocopy of your assignment before submission.
- (b) Exam and Makeup policy is given in the last page of this course outline
- (c) A late present means you come to the class within 15 minutes the class starts. You are automatically absent after
 15 minutes delay and not allowed to the class room.
- (d) If you are a **probation student/retake student**, I would like to have you in 29 classes (presents in minimum **24 classes** are must)

Lesson Plan:

Lesson	Topics	Learning Activities	Assessment tools	Learning Outcome
I	First Order Ordinary Differential Equations: Introduction to Ordinary Differential Equations (ODEs), mathematical modeling with ODEs,	Lecture	Discussions	CO-1
II	First Order ODEs- Separable ODEs Separable ODEs with modeling and applications.	Individual Assignment	Midterm Quiz 1	CO-1
	First Order ODEs- Exact ODEs Separable and Exact ODEs with modeling and applications.	Lecture, Group Discussion	Discussions Mid term Assignment 1	CO-1
IV	First Order Linear ODE: Linear ODE with modeling and applications.	Lecture, Discussion,	Quiz 1 Mid term Assignment 1	CO-1

v	First Order Linear ODE: Linear ODE with modeling and Bernoulli's equation	Lecture, Discussion,	Quiz 1 Midterm	CO-1
VI	Second-Order Linear ODEs: Homogeneous Intro, Types and Solution methods., Homogeneous Linear ODEs of Second order and Solution methods.	Lecture	Midterm	CO-1
VII	Second-Order HomogeneousLinearODEs:Non-Non-HomogeneousLinearODEs with ConstantCoefficients:Superposition principle and inverse operator method.	Lecture	Midterm Assignment 2 Quiz 2	CO-1
VIII	Second-Order HomogeneousLinearODEs:Non-Non-Homogeneous Coefficients: inverse operator method.Non-Homogeneous LinearNon-Homogeneous LinearNon-Homogeneous Linear	Lecture Assignment	Midterm Assignment 1 Quiz 2	CO-1
IX	Second-OrderLinearODEs:Non-HomogeneousNon-HomogeneousLinear ODEs with ConstantCoefficients:Shift exponents method	Lecture	Midterm	CO-1
х	Second-OrderLinearODEs:Non-HomogeneousNon-HomogeneousLinearODEs with ConstantCoefficients:variation of parametersmethod	Lecture	Midterm Assignment 1	CO-1
XI	Second-Order Linear ODEs: Modelling Modelling of Mass–Spring System without damper	Discussion Lecture Assignment Videos,	Midterm Assignment 1	CO-2
XII	Second-Order Linear ODEs: Modelling Modelling: Mass–Spring System with damper	Lecture, Videos,	Midterm Assignment 1	CO-2
XIII	MIDTERA	Λ ΕΧΑΜ		
XIV	Non-homogeneous ODEs: Cauchy Euler Equation and Variation of parameters	Lecture,	Assignment 2 Final Exam	CO-1
xv	Systems of ODEs System of ODEs: Homogeneous system	Lecture, assignment	Final Exam	CO-4
XVI	Systems of ODEs System of ODEs: Homogeneous system, different types of solutions with initial conditions	Lecture, assignment	Assignment 2 Final Exam	CO-4
XVII	Systems of ODEs Nonhomogeneous Linear Systems of ODEs.	Lecture, assignment	Assignment 2 Final Exam	CO-4
XVIII	Laplace Transformation Laplace Transformation: Intro, derivations of L.T of functions	Lecture, assignment	Quiz 3 Final Exam	CO-3
XIX	Laplace Transformation Laplace Transformation: Inverse L.T, derivatives of L.T of functions, Application to solve ODEs	Lecture, assignment	Assignment 2 Quiz 3 Final Exam	CO-3
XX	Laplace Transformation linearity and s-shifting of L.V and solutions of ODEs	Lecture,	Assignment 2 Quiz 3 Final Exam	CO-3
ХХІ	Laplace Transformation Initial Value Problems, unit step function, delta function and t-shifting.	Lecture, class discussion, Problem solving	Assignment 2 Quiz 3 Final Exam	CO-3 CO-2
XXII	Fourier Series and Fourier Functions Periodic function and Fourier Series, Fourier coefficients and applications.	Lecture, class discussion, Problem solving	Final Exam Assignment 2 Quiz 3	CO-5

XXIII	Fourier Series and Fourier Functions Fourier series of arbitrary period, Fourier Even and odd functions, problem solutions	Lecture, class discussion, Problem solving	Final Exam Quiz 4	CO-5
XXIV	Fourier Series and Fourier Functions Half range expression, problem solutions	Lecture, class discussion, Problem solving	Final Exam Assignment 2 Quiz 4	CO-5
XXV	Fourier Series and Fourier Functions Fourier integrals and transforms	Lecture, class discussion, Problem solving	Final Exam Assignment 2 Quiz4	CO-5
XXVI	Series Solutions of ODEs Power series method-Intro, solution about ordinary point (1st order ODEs)	Lecture, class discussion, Problem solving	Final exam	CO-3
XXVII	Series Solutions of ODEs Power series method- solution about ordinary points (2 nd order ODEs)	Lecture, Assignment	Final exam Assignment 2	CO-3
XXVIII	Series Solutions of ODEs Power series method-about singular point	Lecture, In class discussion, Problem solving	Final exam Assignment 2	CO-3
ХХІХ	Preparation for final Exam: Review of selected topics	Explaining, Demonstrating		
	Final Exam			

Classroom Rules of Conduct: Please Refer to NSU Student Handbook, Sections: "Disciplinary Actions" and "Procedures and Guidelines".

Exams & Make Up Policy

Minimum five quizzes will be taken (best three will be considered). NO makeup for quizzes and NO Formative assessment will be retaken under any circumstances. If a student misses the Midterm exam and/or Final exam due to the circumstances beyond their control (official valid documents are required) and informed beforehand (if possible), reasonable arrangement may be considered. Please note the retake exam questions are generally a bit tricky and critical compare to the regular exam questions. Students will get the opportunity to see/recheck their midterm and Final exam scripts.

END