

North South University

Department of Mathematics & Physics (DMP) <u>SPRING 2024</u>

MAT250: Calculus and Analytical Geometry (Calculus III)

Instructor: Office : E-mail: Office hour: Class time: Credit Hour Course coordinator:	3 Prof. Dr. Md. Mamun Molla
Course Objectives	 To demonstrate the function of several variables and plotting 3D figures. To teach the concept of partial derivatives and their applications. To develop the ability of multiple integration in different coordinate systems. To analyze the vector calculus and their physical significance. Upon successful completion of this course, students will be able to: (CO-1)Classify the difference between single and several variables functions and limits as well as plotting 3D figures.
Course Learning Outcomes:	(CO-2) Evaluate the partial derivatives for several variables functions and distinguish ordinary and partial derivatives.(CO-3) Apply multiple integration techniques to find area and volume of the different model geometries.
	(CO-4) Demonstrate their understanding of vector calculus and vector algebra.(CO-5) Apply line and surface integrals to evaluate the work done and the corresponding flux.

Mapping of Course Outcomes

#	Course Outcomes (CO)	Bloom's taxonomy domain/level (C: Cognitive P: Psychomotor A: Affective)	Delivery methods and activities	Assessment tools
CO-1	Classify the difference between single and several variables functions and limits as well as plotting 3D figures.	C1, C2, C3	Lecture Discussion	Quiz, Assignment
CO-2	Evaluate the partial derivatives for several variables functions and distinguish ordinary and partial derivatives.	C3, C4, P2	Lecture, in- class group discussion,	Concept clarification, Midterm exam, Assignment
CO-3	Apply multiple integration techniques to find area and volume of the different model geometries.	C2, C3, P2	Lecture, Discussion	Class work, Quiz, Assignment, Final Exam
CO-4	Demonstrate their understanding of vector calculus and vector algebra.	C2, P2	Lecture, Discussion	Concept, Demonstration, Quiz, Assignment, Final Exam
CO-5	Apply line and surface integrals to evaluate the work done and the corresponding flux.	C2, C3, C4, P2	Lecture Demonstration	Assignment, Final Exam

 Text book : 1. Calculus: Early Transcendental; Anton, Bivens and Davis, 10th Edition.

Marks distribution

ASSESSMENT STRATEGY		GRADING POLICY		
Grading tool	Points	Numerical Scores	Letter Grade	Grade Points
Attendance	10%	93 +	A (Excellent)	4.0
Assignment	10%	90 - 92	A-	3.7
Quiz	20%	87 - 89	B+	3.3
Midterm	25%	83 - 86	B (Good)	3.0
Final Exam	35%	80 - 82	В-	2.7
		77 - 79	C+	2.3
		73 - 76	C (Average)	2.0
		70 - 72	C-	1.7
		67 - 69	D+	1.3
		60 - 66	D (Poor)	1.0

	Below 60	F (Failure)	0.0

Course Content:

Partial Derivatives: (Exercise 13)

- 1. Functions of several variables, Limit and Continuity
- 2. Partial Derivatives, Differentiability and Chain Rule
- 3. Directional Derivatives, Tangent planes and normal vector, maxima and minima

Some Chapters from MAT240 (Need revision)

- 1. Cylindrical surface:3D graph plotting (11.1)
- 2. Parametric equation of lines (11.5)
- 3. Cylindrical and Spherical Coordinates (11.8)

Multiple Integrals: (Exercise 14)

- 1. Double Integrals over rectangular and non-rectangular regions
- 2. Double Integrals in Polar Coordinates
- 3. Triple Integrals: Cartesian, Cylindrical and spherical coordinates
- 4. Change of variables in Multiple Integrals; Jacobean

Vector Calculus: (Exercise 15)

Dot and cross product (exercise 11.3 and 11.4, need revision), Vector fields, Line integrals, Green's Theorem, Surface Integrals, The Divergence, Theorem, Stokes Theorem.

Course Schedule:

Lesson	Topics	Learning Activities	Assessment tools	Learning Outcome
1	Functions of two variables: drawing of	Lecture1	Discussions	
	natural domain		Mid term	CO-1
2	Function of two variables: 3D graph	Lecture1		
	plotting			
3	Limits and Continuity	Lecture		
		Assignment		CO-1
4	Partial Derivatives: first order	Lecture	Discussions	
	derivatives and their physical significance	Group Discussion	Mid term	CO-2
5	Partial Derivatives: 2 nd and mixed	Lecture	Mid term	CO-2

	order derivatives and their applications	Discussion		
6	Differentiability and Chain Rule	Lecture	Mid term	CO-2
7	Directional Derivatives	Lecture	Mid term	
		Assignment		CO-2
8	Tangent planes and normal line		Mid term	CO-2
		Lecture		
9	maxima and minima	Discussion		CO-2
		Lecture	Mid term	
		Assignment		
10	Double Integrals over rectangular	Lecture	Mid term	CO-3
	regions	Assignment		
11	Double Integrals over non-rectangular regions	Lecture	Mid term	CO-1
12	Double Integrals over non-rectangular regions: volume calculation			
13	Double Integrals in Polar Coordinates	Lecture	Mid term	
		assignment		
14	Midterm (Maxi	mum 14 lectu	res)	
15	Triple Integrals: in Cartesian	Lecture	final	CO-3
	coordinates	assignment		
16	Triple Integrals: in Cartesian coordinates			
17	Change of variables in Multiple	Lecture	final	CO-3
	Integrals; Jacobean (chapter 14.7)	assignment		
18	Change of variables in Multiple	Lecture	final	CO-3
	Integrals; Jacobean (chapter 14.7)	assignment		
	Cylindrical and Spherical Coordinates:	Lecture	Final	
	cnapter 11.8.			CO-3
	We need this chapter for understanding			
	Cymuncar and Spherical Coordinates			

19	Triple Integrals: Cylindrical and spherical coordinates (chapter 14.6) In this chapter we need the Jacobean concept from the chapter 14.7	Lecture	Final	CO-3
20	Triple Integrals: Cylindrical and spherical coordinates (chapter 14.6)	Lecture	Final	CO-3
21	Vector fields	Lecture	Final Exam	CO-4
22	Line integrals: for scalar function	Lecture	Final Exam	CO-4
23	Line integrals: for vector field	Lecture	Final Exam	CO-4
24	Green's Theorem	Lecture	Final Exam	CO-4
25	Surface Integrals: for scalar function	Lecture	Final Exam	CO-4
26	Surface Integrals: for vector field	Lecture	Final exam	CO-5
27	Divergence theorem	Lecture	Final exam	CO-5
28	Divergence theorem	Lecture	Final exam	CO-5
29	Stokes theorem: verification	Lecture	Final exam	CO-5
30	Stokes theorem: evaluation of line integral	Lecture,	Final exam	CO-4
	Final Exam			

Rules and regulations:

- (a) There is **no scope to retake a quiz**. In case of Mid-term- or Final exam, exceptional cases*(unfortunate physical inability, accidents, serious illness) may be considered conditionally (with a **penalty of 20% reduced marks**) with proper justification.
- (b) Three consecutive absents need an official clarification.
- (c) Student having attendance less than 60% of total classes will be not allowed to sit for Final Exam.

** Three quizzes will be taken. *** Two assignments will be taken.

Note: Full attendance will carry the bonus marks.