MANUAL ON CEE330L: STRUCTURAL ANALYSIS & DESIGN LAB STAAD.Pro

Department of Civil and Environmental Engineering

North South University

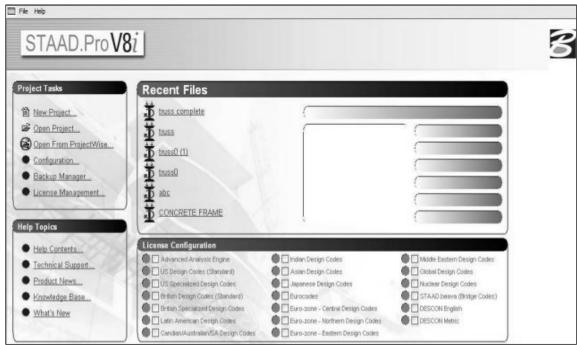
TABLE OF CONTENTS

SL. No.	Topic Name	Page No.
1.	Chapter-I STAAD Pro. environment Introduction to STAAD Pro. environment	1-4
2.	Chapter-II Various finite elements and cross-sectional shapes	5-9
3.	Chapter-III Two Dimensional Portal frame under vertical and horizontal loads	10-19
4.	Chapter-IV Truss Analysis Roof Truss Analysis Bridge Truss Analysis	20-35
5.	Chapter-V Multi-storied building frame	36-49

CHAPTER-I

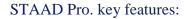
INTRODUCTION TO STAAD Pro. ENVIRONMENT

STAAD Pro. Stands for Structural Analysis And Design Program


All structural analysis software generally consists of three parts:

- Pre Processing: Generates the model, assembles and organizes all data needed for the analysis.
- Processing: Calculates displacements, member forces, reactions, stresses, etc.
- Post Processing: Displays the results.

STAAD.Pro Workflow Process:


The process of modeling and designing in STAAD.Pro can be summarized into the following general workflow process, which is suggested inherently by the on-screen organization of the tabs within the program:

- 1. Basic Geometry: Define the basic geometry of the structure using beams, columns, plates and/or solid elements.
- 2. Section Properties: Define the sizes of members by width, depth, cross sectional shape, etc.
- 3. Materials Constants: Specify material such as timber, steel, concrete, or aluminum to define Poisson's Ratio, Coefficient of Thermal Expansion, density, etc.
- 4. Member Specifications: Define member orientations, member offsets, member releases where moment transfer is to be limited or eliminated, and conditions that only allow a partial transfer of certain types of forces such as tension-only.
- 5. Supports: Define support locations and boundary conditions including moment fixity, support stiffness, and support angle.
- 6. Loads: Assign loads such as self-weight, dead, live, wind and seismic, and define load combinations.
- 7. Analysis Instructions: Indicate the type of analysis to be performed (regular analysis, P-delta, Buckling, Pushover, etc.) and define associated options.
- 8. Post Processing Commands: Extract analysis results, review deflected shapes, prepare shear and moment diagrams, generate tables to present results, etc.
- 9. Design Commands: Specify (for steel, concrete, timber, etc.)

The STAAD.Pro Start Page is displayed as following

Fig 1.1: Start Page of STAAD Pro.

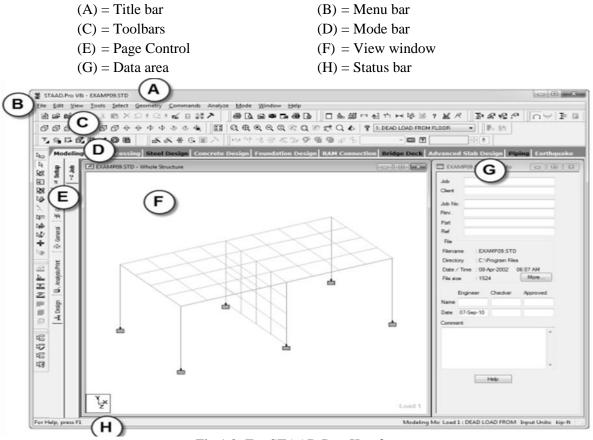


Fig 1.2: For STAAD Pro. Key features

Some most Usable Toolbars and icon views:

Fig 1.3: STAAD Pro. Toolbars and icon views

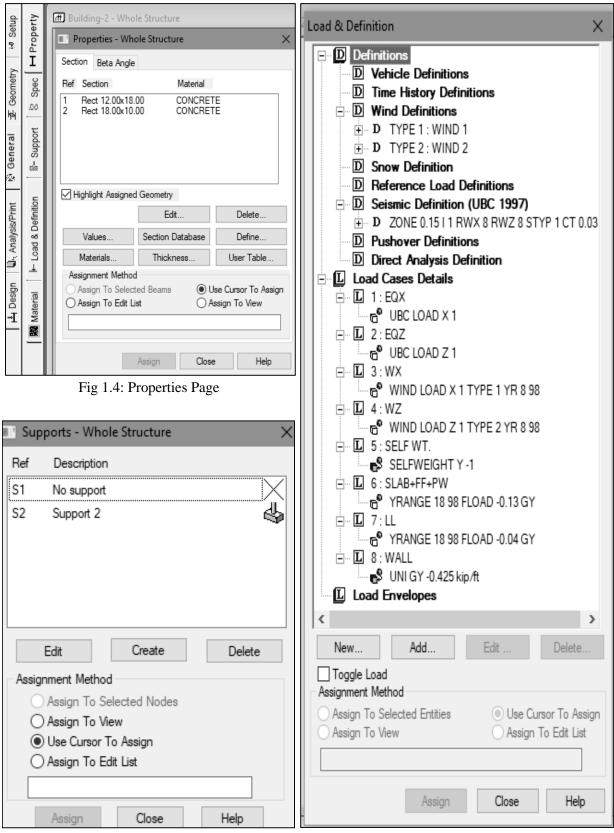


Fig 1.4: Supports Page

Fig 1.4: Load & Definition Page

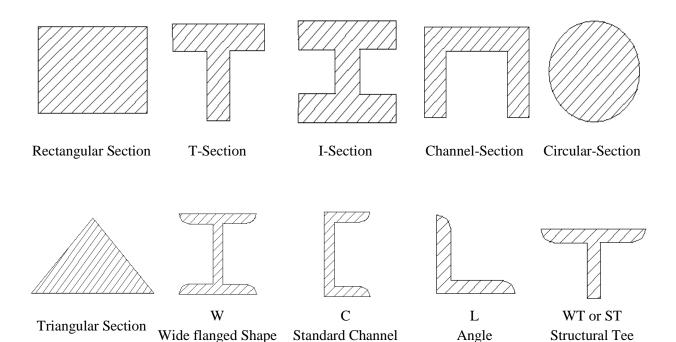
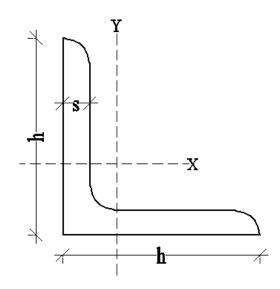
CHAPTER-II

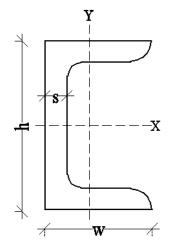
CROSS SECTIONAL SHAPES FOR VARIOUS FINITE ELEMENTS

General

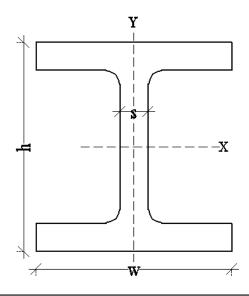
To design a building structure, bridge structure or any other structures use multiple elements that can be characterized as beams, columns, trusses etc. These structural elements have some cross-section size and shape to build up the total shape of the structures. The behavior of a structural member is dictated by its material, cross sectional size and shape of the elements and its geometry. Depending on different materials they have different cross sectional shape;

- Rectangular Section
- T-Section
- I-Section
- Channel-Section
- Circular-Section
- Triangular Section
- Wide flanged Shape
- Standard Channel
- Angle
- Structural Tee etc.


Fig: 2.1 Two dimensional cross section of various finite elements

- Some American Standard Steel cross-sections and their properties
- 1. Angles Equal Legs


~		Dimensi	ons		Static Parameters		
Size (in x in)	Depth(h) (in)	Thickness(s) (in)	Sectional Area (in ²)	Weight (lb _f /ft)	Moment of Inertia(I _x) (in ⁴)		
	12	1 3/8	30.9	105	410.0		
12 x 12	12	1 1/4	28.3	96.4	377.5		
12 X 12	12	1 1/8	25.6	87.2	344.1		
	12	1	22.9	77.8	310.4		
	10	1 3/8	25.6	87.1	232.1		
	10	1 1/4	23.5	79.9	215.1		
10 x 10	10	1 1/8	21.2	72.3	196.2		
10 x 10	10	1	19.0	64.7	177.3		
	10	7/8	16.7	56.9	157.6		
	10	3/4	14.4	49.1	137.2		
	8	1 1/8	16.7	56.9	98.0		
	8	1	15.0	51.0	89.0		
	8	7/8	13.2	45.0	79.6		
8 x 8	8	3/4	11.4	38.9	69.7		
	8	5/8	9.6	32.7	59.4		
	8	9/16	8.7	29.6	54.1		
	8	1/2	7.8	26.4	48.6		
	6	1	11.0	37.4	35.5		
6 x 6	6	7/8	9.7	33.1	31.9		
0 X 0	6	3/4	8.4	28.7	28.2		
	6	5/8	7.1	24.2	24.2		

2. American Standard Steel Channels:

D · · · ·			D				Static Parameters			
Designation			Dimensio	ons		Moment	Moment of Inertia Elastic Section Modu			
Imperial (in x lb/ft)	Depth - h - (in)	With - w - (in)	Web Thickness (s) (in)	Sectional Area (in ²)	Weight (lb _f /ft)	I _x (in ⁴)	I _y (in ⁴)	S _x (in ³)	S _y (in ³)	
C 15 x 50	15	3.716	0.716	14.7	50	404	11.0	53.8	3.78	
C 15 x 40	15	3.520	0.520	11.8	40	349	9.23	46.5	3.37	
C 15 x 33.9	15	3.400	0.400	9.96	33.9	315	8.13	42.0	3.11	
C 12 x 30	12	3.170	0.510	8.82	30	162	5.14	27.0	2.06	
C 12 x 25	12	3.047	0.387	7.35	25	144	4.47	24.1	1.88	
C 12 x 20.7	12	2.942	0.282	6.09	20.7	129	3.88	21.5	1.73	
C 10 x 30	10	3.033	0.673	8.82	30	103	3.94	20.7	1.65	
C 10 x 25	10	2.886	0.526	7.35	25	91.2	3.36	18.2	1.48	
C 10 x 20	10	2.739	0.379	5.88	20	78.9	2.81	15.8	1.32	
C 10 x 15.3	10	2.600	0.240	4.49	15.3	67.4	2.28	13.5	1.16	
C 9 x 20	9	2.648	0.448	5.88	20	60.9	2.42	13.5	1.17	
C 9 x 15	9	2.485	0.285	4.41	15	51.0	1.93	11.3	1.01	
C 9 x 13.4	9	2.433	0.233	3.94	13.4	47.9	1.76	10.6	0.96	
C 8 x 18.75	8	2.527	0.487	5.51	18.75	44.0	1.98	11.0	1.01	
C 8 x 13.75	8	2.343	0.303	4.04	13.75	36.1	1.53	9.03	0.85	

3. American Wide Flange Beams:

								Static Parameters			
Desig	Dimensions				Moment of Inertia		Elastic Section Modulus				
Imperial (in x in x lb/ft)	Metric (mm x mm x kg/m)	Depth - h - (mm)	Width - w - (mm)	Web Thickness - s - (mm)	Sectional Area (cm ²)	Weight (kg/m)	I _x (cm ⁴)	I _y (cm ⁴)	S _x (cm ³)	S _y (cm ³)	
W 4 x 4 x 13	W 100 x 100 x 19.3	106	103	7.1	24.7	19.3	475.9	160.6	89.9	31.2	
W 5 x 5 x 16	W 130 x 130 x 23.8	127	127	6.1	30.4	23.8	885.5	311	139.5	49	
W 5 x 5 x 19	W 130 x 130 x 28.1	131	128	6.9	35.9	28.1	1099	381.4	167.7	59.6	
W 6 x 4 x 9	W 150 x 100 x 13.5	150	100	4.3	17.3	13.5	685.5	91.8	91.4	18.4	
W 6 x 4 x 12	W 150 x 100 x 18.0	153	102	5.8	22.9	18	915.9	125.9	122.1	25.4	
W 6 x 4 x 16	W 150 x 100 x 24.0	160	102	6.6	30.6	24	1342	182.6	167.8	35.8	
W 6 x 6 x 15	W 150 x 150 x 22.5	152	152	5.8	28.6	22.5	1206	386.6	158.6	50.9	
W 6 x 6 x 20	W 150 x 150 x 29.8	157	153	6.6	37.9	29.8	1714	555.5	218.4	72.6	
W 6 x 6 x 25	W 150 x 150 x 37.1	162	154	8.1	47.4	37.1	2220	706.8	274.1	91.8	

• Modulus of Elasticity of Concrete:

According to ACI Code the modulus of elasticity of concrete E $_{\rm c}$ can be calculated by the formula given below:

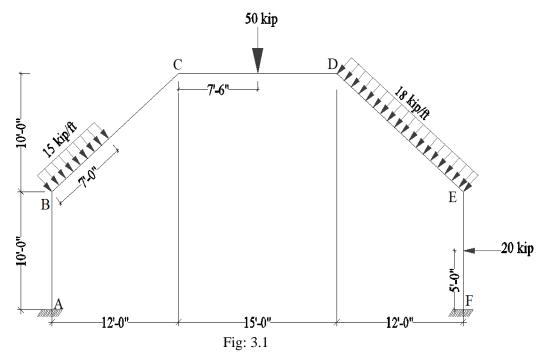
$$E_c = 33 W_c^{1.5} \sqrt{f'_c} \text{ psi (Ib/in^2)}$$

Or, $E_c = 0.04 W_c^{1.5} \sqrt{f'_c} \text{ MPa (N/mm^2)}$

With normal-weight, normal-density concrete these two relations can be simplified to

$$E_c = 57000 \sqrt{f'_c} \text{ psi (Ib/in^2)}$$
$$E_c = 4700 \sqrt{f'_c} \text{ MPa (N/mm^2)}$$

Where,


Ec = Modulus of elasticity of concrete (Ib/in²) or MPa f'_{c} = Specified 28-day compressive strength of concrete (Ib/in²) or MPa Wc = Concrete Weight.

CHAPTER-III

TWO DIMENSIONAL PORTAL FRAMES

Objective: Analyze the following Two Dimensional Portal frame (Fig: 3.1) under vertical and horizontal loads and find out the following values;

- 1. Support reactions
- 2. Shear Force and Bending moment on member CD
- 3. Displacement (Deflection) of point B, C, D, E

Properties: Materials= Concrete Section Size = 15"X 15"

Procedure:

- 1. Geometry (Model creating):
 - 1.1 Open STAAD Pro. software →File → New → Click on Space →Write the File Name and select Location→Length Units = Foot, Force Units = Kilo Pound → Next →Add Beam →Finish.(Fig: 3.2)
 - 1.2 Now close the Default Grid window → Input the coordinates for point A (X=0, Y=0,Z=0), B (X=0, Y=10, Z=0), C (X=12, Y=20, Z=0), D (X=27, Y=20, Z=0), E (X=39, Y=10,Z=0), F (X=39, Y=0,Z=0), Then click on Geometry →Add Beam →Add Beam from point to point. (Fig: 3.3) & (Fig: 3.4)

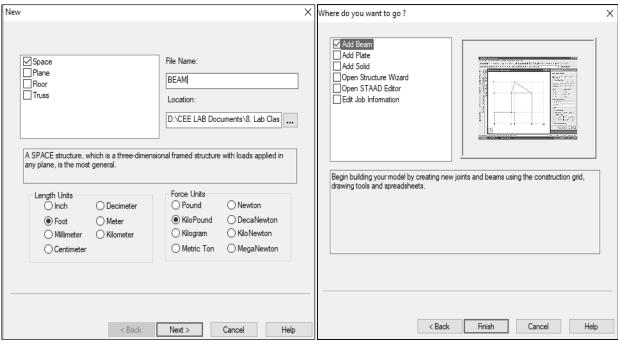
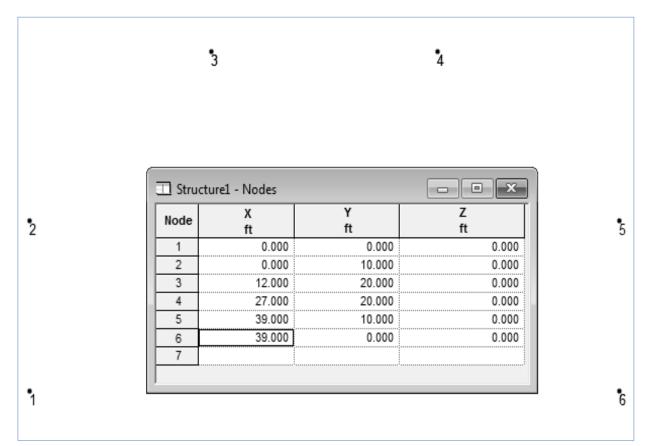



Fig: 3.2

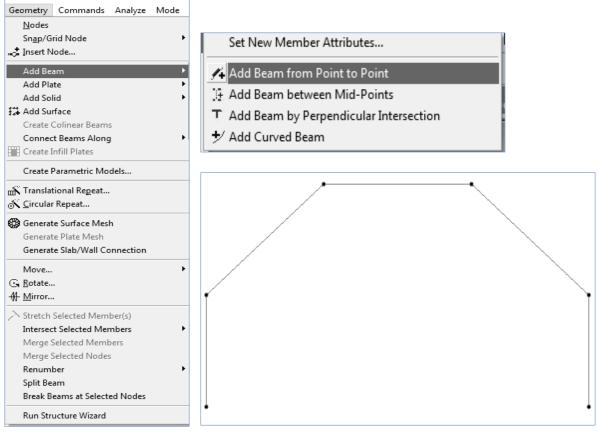


Fig: 3.4

2. General (Define & Assign):

- 2.1 Property: Define →Rectangle →Material = CONCRETE → YD = 1.25 ft (15"), ZD =1.25 ft (15") → Add →Close then for Assign select the property and click on Assign to View →Assign → Yes. (Fig: 3.5)
- 2.2 Support: Create \rightarrow Fixed \rightarrow Add. (Fig: 3.6)

Now for Assign click on the Support type \rightarrow Select the Support point in Beam \rightarrow Assign to Selected Nodes \rightarrow Assign \rightarrow Yes.

- 2.3 Load & Definitions: Load Cases Details → Add → Loading Type = Dead → Title = Dead Load or DL → Add → Again Loading Type = Live → Title = Live Load or LL → Add → Close. (Fig: 3.7)
 - DL →Add →Self weight →Direction = Y, Factor = -1→Add →Close. Then SELFWEIGHT Y-1 →Assign To View →Assign →Yes. (Fig: 3.8)
 - For Given loads: Again Live Load or LL →Add →Member Load →Uniform Force →W1 = -15 kip, d1= 0 ft, d2=8 ft →Direction = Y(Local) →Add →Close, then click on defined force and select the required Beam → Assign to selected Beams →Assign →Yes. (Fig: 3.9 & Fig: 3.10)
 - The same process follow for other Trapezoidal, Concentrated and Uniform distributed forces.
 - Load Combination: Load Cases Details → Add →Define Combinations →Name = DL+LL →Default ai = 1, then select DL, LL and click on >> to send right side from left side. (Fig: 3.11)

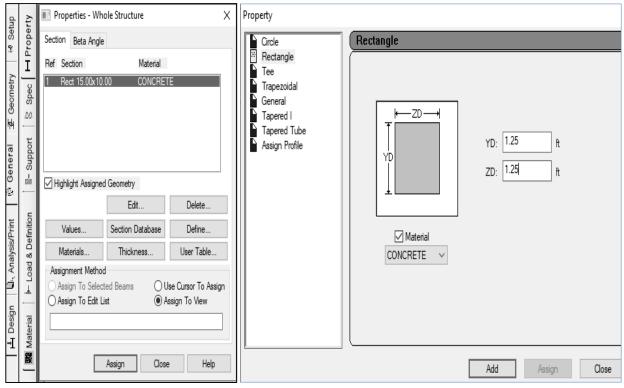


Fig: 3.5

Supports - Whole Structure ×	Create Support	×
Ref Description S1 No support	Foundation Inclined Tension/Compression On Fixed Pinned Fixed But Enforced Enforced But Mult	ily Springs. tilinear Spring
S1 No support S2 Support 2 S3 Support 3		
Edit Create Delete Assignment Method Assign To Selected Nodes Assign To View © Use Cursor To Assign Assign To Edit List	Releases	
Assign Close Help	Add Cancel Assign	Help

Fig: 3.6

Load & Definition X	Primary	Primary
Load & Definition X	Load Generation Define Combinations Auto Load Combination	
		Number 1 Loading Type : Dead V Reducible per UBC/IBC
		Title DL
New Add Edit Delete □ Toggle Load Assignment Method		
Assign To View Assign To Edit List		
Assign Close Help		Add Close Help

Fig: 3.7

Add New : Load Items		
Add New : Load Items	Direction O X Y O Z Factor -1	Load & Definitions Definitions Load Cases Details Load Cases Details Load Envelopes New Add Edit Delete Toggle Load Assignment Method Assign To Selected Beams/Plates O Use Cursor To Assign
🔖 Response Spectra		Assign To View Assign To Edit List
 Repeat Load Frequency 		Assign Close Help
		Assign Close help

Fig: 3.8

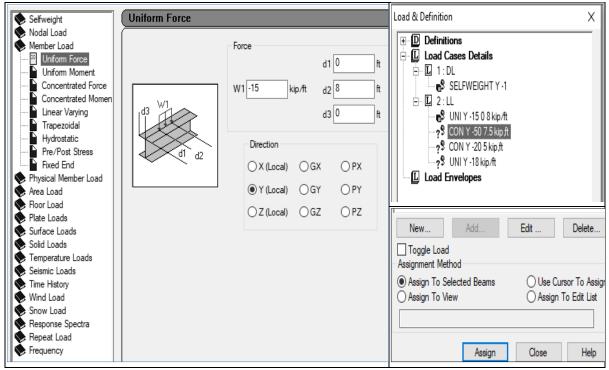


Fig: 3.9

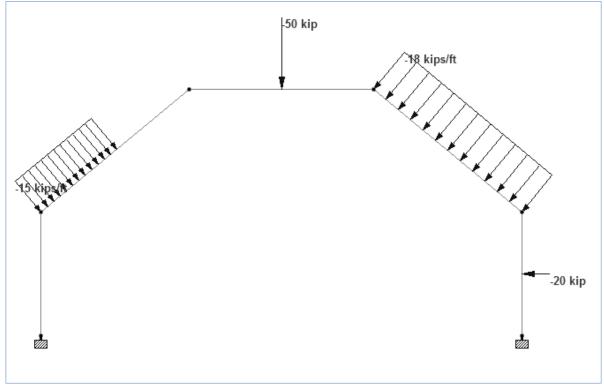


Fig: 3.10

Add New : Load Cases	
Primary	Define Combinations
Load Generation Define Combinations Auto Load Combination	Load No: 3 Name : DL+LL Type Image: Comparison of the second seco
	Available Load Cases: Load Combination Definition: [S] = SRSS Load Cases Factor Combined Cases Factor
	Add Close

3. Analysis and Result:

- From left side click on Analysis/Print \rightarrow Static Check or All \rightarrow Add \rightarrow Close
- At Menu bar →Analyze →Run Analysis →Go to post processing mode →Done →Selected load cases = DL+LL →Apply →OK. (Fig: 3.12 & Fig: 3.13)
- For Support Reactions use node cursor and double click on the support point →Reactions. Then get the Table for all Support Reactions. (Fig: 3.14)
- For Beam Forces: From left side click on Beam →Graphs the find out Bending moment, Shear force, and Axial force by clicking on required Beam from the following. (Fig: 3.15)
- For Displacement (Deflection) of point go to Result (from Menu bar) →Deflection. use node cursor and Double click on the required point by using Node cursor →Displacements. Then get the Table for all Node Displacements. (Fig: 3.16)

Analy:	ze Mode Window Help	
Ru	n AnalysisChi-15 🗋 🗋 🗂 📥 🎒 🕶 🔬 🕆 🛏 🧏 🚿 ?	👱 🥂 🛛 🛣 🔗 🕯
	STAAD Analysis and Design	- 🗆 🗙
	++ Processing Global Stiffness Matrix. ++ Finished Processing Global Stiffness Matrix.	13:47:32 ^ 150 ms
CT O	++ Processing Triangular Factorization. ++ Finished Triangular Factorization.	13:47:32 100 ms
cre	++ Calculating Joint Displacement. ++ Finished Joint Displacement Calculation.	13:47:33 160 ms
	++ Calculating Member Forces.	13:47:33
	++ Analysis Successfully Completed ++ ++ Creating Displacement File (DSP)	13:47:33
	++ Creating Reaction File (REA) ++ Calculating Section Forces1-110.	13:47:33 13:47:33
	++ Calculating Section Forces2. ++ Calculating Section Forces3	13:47:33 13:47:33
	++ Creating Section Force File (BMD) ++ Creating Section Displace File (SCN)	13:47:33 13:47:34
	++ Done.	13:47:34
	0 Error(s), 2 Warning(s), 0 Note(s)	
	++ End STAAD.Pro Run Elapsed Time = 4 Secs	B-2.anl
	<	>
2	○ View Dutput File ● Go to Post Processing Mode	
	Stay in Modeling Mode	Done

Fig: 3.12

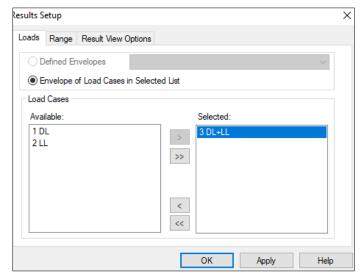


Fig: 3.13

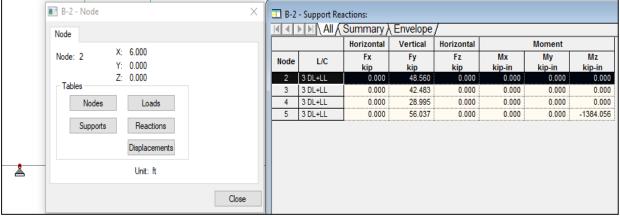


Fig: 3.14

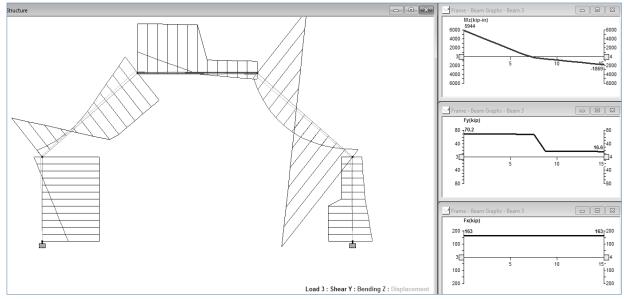


Fig: 3.15

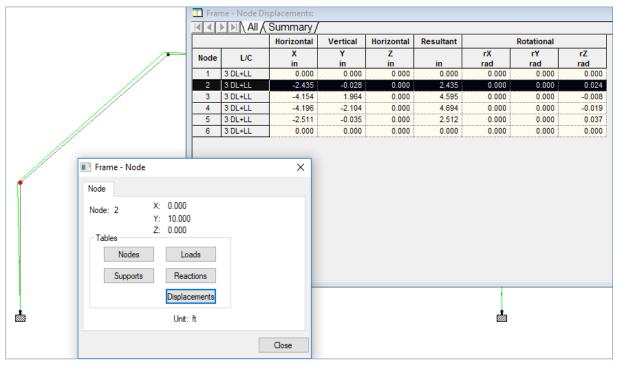
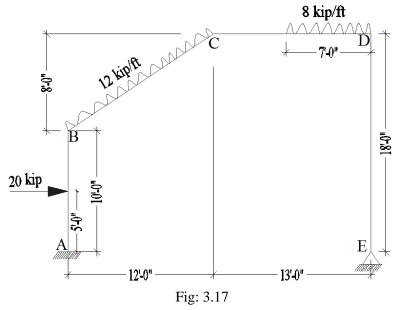
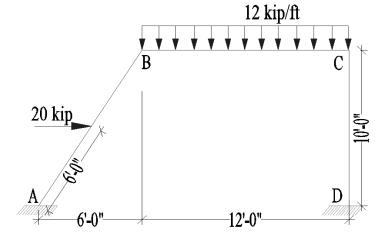



Fig: 3.16

Assignment-01:

Analyze the following 2D Portal frame under vertical and horizontal loads and find out the following values;

- a) Support reactions
- b) Displacement (Deflection) of point B, C, D
- c) Shear Force and Bending moment on member BC



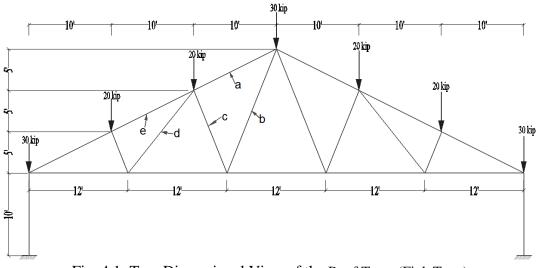
Properties: Materials= Concrete Section Size = 12"X 12"

Assignment-02:

Analyze the following 2D Portal frame under vertical and horizontal loads and find out the following values;

- a) Support reactions
- b) Displacement (Deflection) of point B, C, D
- c) Shear Force and Bending moment on member BC

Fig: 3.18


CHAPTER-IV

TRUSS ANALYSIS

A. Roof Truss

Objective: Analyze the following Roof Truss (Fink Type) and find out the following values;

- 1. Support reactions
- 2. Forces for the members a, b, c, d, e, f

Fig. 4.1: Two Dimensional View of the Roof Truss (Fink Type)

Properties:

Materials= Steel

All members are Japanese Angle = L 60X60X4

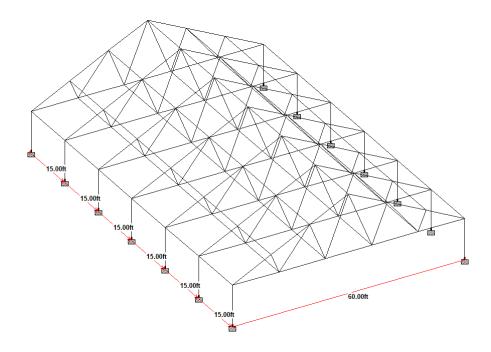
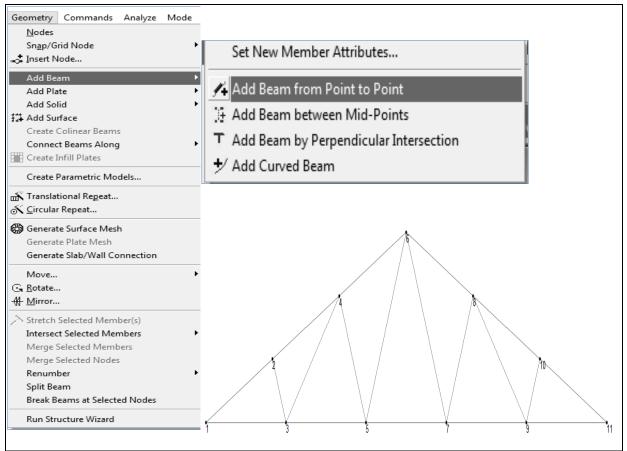


Fig. 4.2: Three Dimensional View of the Roof Truss (Fink Type)

Procedure:


- 1. Geometry (Model creating):
 - 1.1 Open STAAD Pro. software →File → New → Click on Truss →Write the File Name and select Location→Length Units = Foot, Force Units = Kilo Pound → Next →Add Beam →Finish.(Fig: 4.3)
 - 1.2 Now close the Default Grid window → input coordinates value for all nodes like 1st Node point (X=0, Y=0,Z=0), 2nd Node point (X=10, Y=5,Z=0), 3rd Node point (X=12, Y=0,Z=0), 4th Node point (X=20, Y=10,Z=0), 5th Node point (X=24, Y=0,Z=0) and similarly others nodes Then click on Geometry →Add Beam →Add Beam from point to point. (Fig: 4.4) & (Fig: 4.5)
 - 1.3 Now Select the Nodes 1 & 11 (in View window) by using node cursor →Translational Repeat → Global Direction =Y → No. of Steps = 1 → Spacing= -10(-ve) → Click on Link Steps → OK (Fig: 4.6)

New	×	Where do you want to go ?	×
☐ Plane ☐ Roor R ☑ Truss La	le Name: Roof truss .ocation: D:\CEE LAB Documents\8. Lab Clas	Add Plate Add Plate Add Sold Open Structure Wizard Open STAD Editor Edit Job Information Begin building your model by creating new joints and beams using the construction grid.]
Inch Decimeter O	Force Units Pound Newton (KiloPound DecaNewton Kilogram KiloNewton Metric Ton MegaNewton	drawing tools and spreadsheets.	
< Back	Next > Cancel Help	< Back Finish Cancel Help	

Fig: 4.3

Fig: 4.4

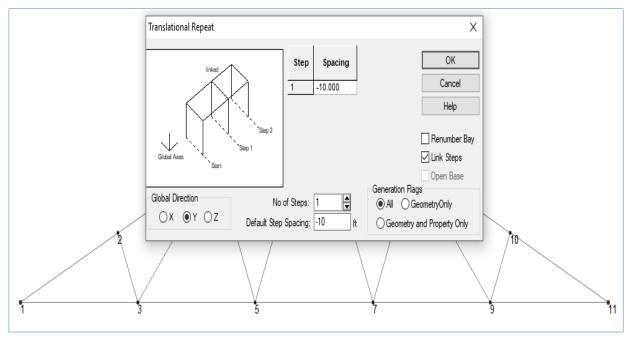


Fig: 4.6

- 2. General (Define & Assign):
 - 2.1 Property: Section Database →Japanese→ Angle→ L60X60X4 →Material = STEEL→ Add →Close then for Assign select the property and click on Assign to View →Assign → Yes. (Fig: 4.7)
 - 2.2 Support: Create →Fixed →Add → Now for Assign click on the Support type →Select the Support point in Truss →Assign to Selected Nodes →Assign →Yes.
 - 2.3 Translational Repeat: Now Select the whole structure (in View window) by using beam cursor →Translational Repeat → Global Direction =Z → No. of Steps = 6 → Spacing= 15 → Click on Link Steps → OK and then delete extra beams (Fig: 4.8)
 - 2.4 Load & Definitions: → Load Cases Details → Add → Loading Type = Dead →Title = Dead Load or DL → Add → Loading Type = Live →Title = Live Load or LL → Add → Close.
 - DL →Add →Self weight →Direction = Y, Factor = -1→Add →Close. Then SELFWEIGHT Y-1→Assign To View →Assign →Yes. (Fig: 4.10)
 - For Given loads: Again Live Load or LL →Add →Nodal Load → Fy = -30 kip →Add →
 Fy = -20 kip→Add →Close, then click on defined force and select the required Nodes →
 Assign to selected Nodes →Assign →Yes. (Fig: 4.11)
 - 2.5 Load Combination: Load Cases Details → Add →Define Combinations →Name = DL+LL →Default ai = 1, then select DL, LL and click on >> to send right side from left side. (Fig: 4.12)

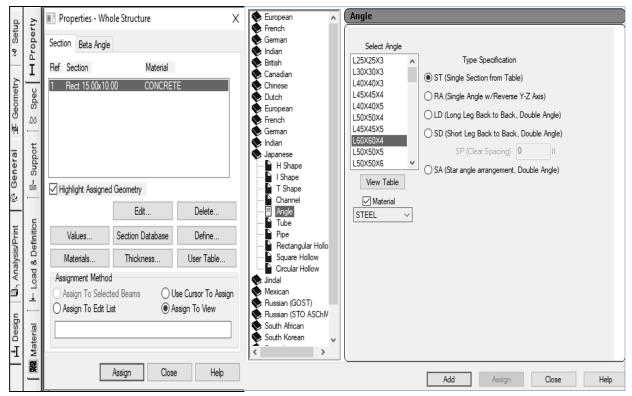


Fig: 4.7

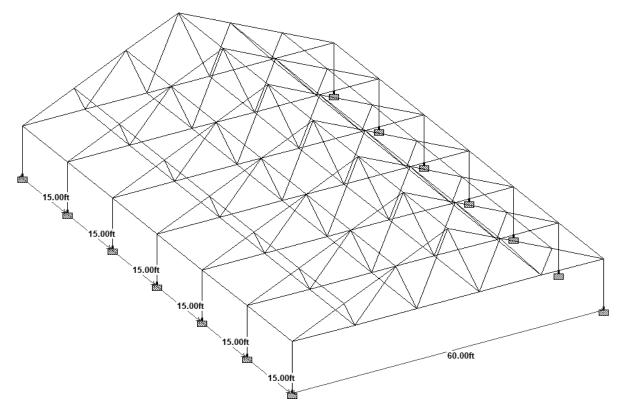


Fig: 4.8

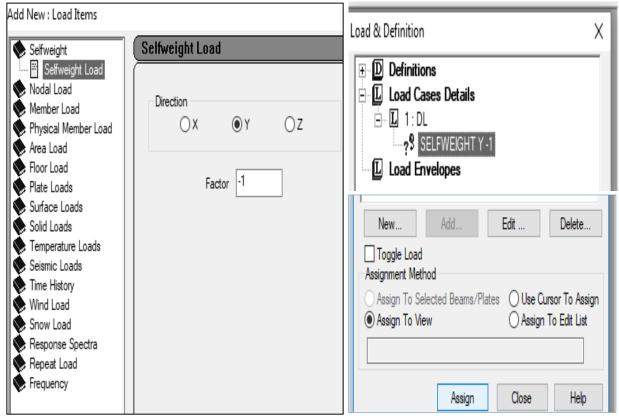


Fig: 4.10

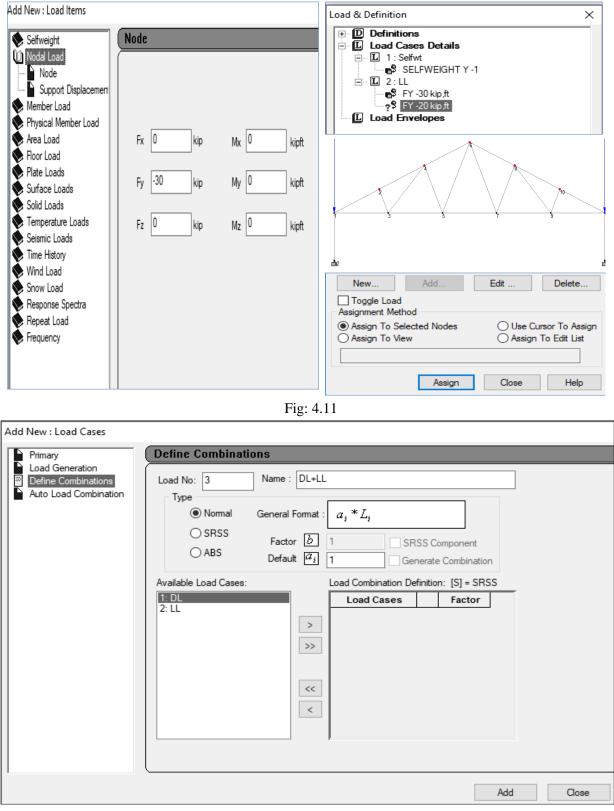
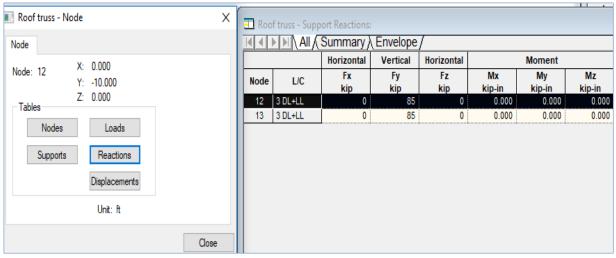


Fig: 4.12

3. Analysis and Result:


- From left side click on Analysis/Print \rightarrow Static Check or All \rightarrow Add \rightarrow Close
- At Menu bar →Analyze →Run Analysis →Go to post processing mode →Done →Selected load cases = DL+LL →Apply →OK. (Fig: 4.13 & Fig: 4.14)
- For Support Reactions use node cursor and double click on the support point →Reactions. Then get the Table for all Support Reactions. (Fig: 4.15)
- For Beam Forces: From left side click on Beam →Graphs the find out Axial force by clicking on required Beam from the following (Fig: 4.16)

Analysis Made Mindaux Hale		
Analyze Mode Window Help		≪
		к ля (-
🔟 💆 STAAD Analysis and Design	_	\times
++ Processing Global Stiffness Matrix.	13:47:32	^
++ Finished Processing Global Stiffness Matrix.	150 ms 13·47·32	
++ Processing Triangular Factorization. ++ Finished Triangular Factorization.	13:47:32 100 ms	
++ Finished Friangular Factorization. ++ Calculating Joint Displacement.	13:47:33	
++ Finished Joint Displacement Calculation.	160 ms	
++ Calculating Member Forces.	13:47:33	
++ Analysis Successfully Completed ++	10.11.00	
++ Creating Displacement File (DSP)	13:47:33	
++ Creating Reaction File (REA)	13:47:33	
++ Calculating Section Forces1-110.	13:47:33	
++ Calculating Section Forces2.	13:47:33	
++ Calculating Section Forces3	13:47:33	
++ Creating Section Force File (BMD)	13:47:33	
++ Creating Section Displace File (SCN)	13:47:34	
++ Done.	13:47:34	
0 Error(s), 2 Warning(s), 0 Note(s)		
++ End STAAD.Pro Run Elapsed Time = 4 Secs		
	B-2.anl	~
<	>	
View Output File		
Go to Post Processing Mode	-	
O Stay in Modeling Mode	Done	

Fig: 4.13

Results S	etup					×
Loads	Range	Result View C	Options			
() E	lefined Er nvelope (in Selected List			~
Ava 1 D 2 L			>	Selected: 3 DL+LL	-	
			<]		
				ОК	Apply	Help

Fig: 4.14

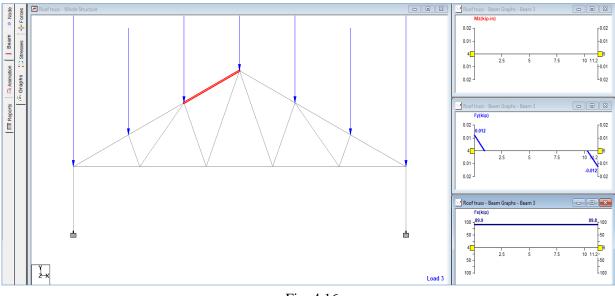


Fig: 4.16

B. Bridge Truss

Objective: Analyze the following Bridge Truss (Pratt Type) and find out the following values;

- 1. Support reactions
- 2. Forces for the members a, b, c

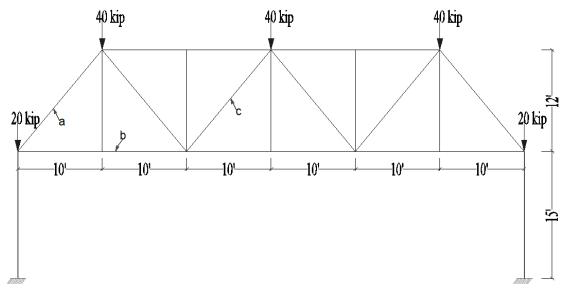


Fig. 4.17: Two Dimensional View of the Bridge Truss (Pratt Type)

Properties:

All members are Japanese I shape = I 150X75X6

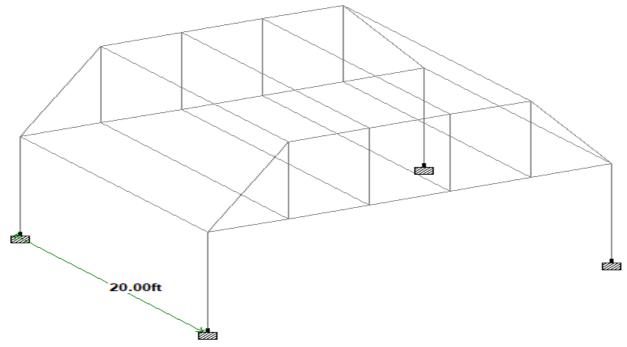


Fig. 4.18: Three Dimensional View of the Bridge Truss (Pratt Type)

Procedure:

- 1. Geometry (Model creating):
 - 1.1 Open STAAD Pro. software →File → New → Click on Truss →Write the File Name and select Location→Length Units = Foot, Force Units = Kilo Pound → Next →Add Beam →Finish. (Fig: 4.19)

New				×
Space			File Name:	
Plane			Boof truss	
☐ Floor ✓ Truss	Roor			
			Location:	
			D:\CEE LAB Documents\8. Lab Clas	
				_
A TRUSS s	tructure consist:	s of truss members	which can have only axial member forces	
and no ben	ding in the mem	bers.	,,,,,,,,	
Length U		Decimeter	Force Units O Pound O Newton	
-	-		KiloPound DecaNewton	
Fo	_	Meter Kilometer	Kilogram KiloNewton	
	entimeter	Niometer	O Metric Ton O MegaNewton	
	entimeter		O Methic Ton O Meganewion	
		< Back	Next > Cancel He	lp
Where do you wa	ant to go ?			×
Where do you w	ant to go ?			×
Add Beam	-			×
Add Beam	-			×
Add Beam Add Plate	1			×
Add Beam Add Plate Add Solid Open Stru Open STA	cture Wizard			×
Add Beam Add Plate Add Solid Open Strue	cture Wizard			×
Add Beam Add Plate Add Solid Open Stru Open STA	cture Wizard			×
Add Beam Add Plate Add Solid Open Stru Open STA	cture Wizard			×
Add Beam Add Plate Add Solid Open Stru	cture Wizard			×
Add Beam Add Plate Add Solid Open Stru	cture Wizard			×
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard AD Editor iformation	creating new joint		×
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard AD Editor iformation	creating new joint:		×
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint:		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint:		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint:		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint:		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint		
Add Beam Add Plate Add Solid Open Stru Open STA Edit Job In	cture Wizard VAD Editor iformation	creating new joint:		

Fig: 4.19

- 1.2 Now close the Default Grid window → For 1st Node point input (X=0, Y=0,Z=0) → Select Node (in View window) by using node cursor →Translational Repeat →Global Direction =X →No. of Steps = 6 → Spacing=10 →Click on Link Steps →OK. Again select the members 2 to 5→Translational Repeat →Global Direction =Y →No. of Steps = 1 → Spacing=12 →Click on Link Steps →OK. (Fig: 4.20)
- 1.3 Add beam from point 1 to 7 and 10 to 6. (Fig: 4.21)
- 1.4 Now Select the Nodes 1 & 6 (in View window) by using node cursor →Translational Repeat → Global Direction =Y → No. of Steps = 1 → Spacing= -15 (-ve) → Click on Link Steps → OK (Fig: 4.22). For 3D select the whole structure by using beam cursor →Translational Repeat → Global Direction =Z → No. of Steps = 1 → Spacing= 20 → Click on Link Steps → OK

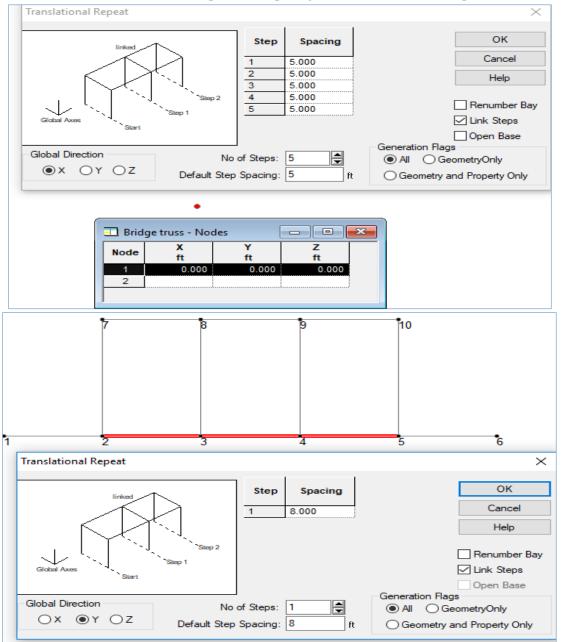
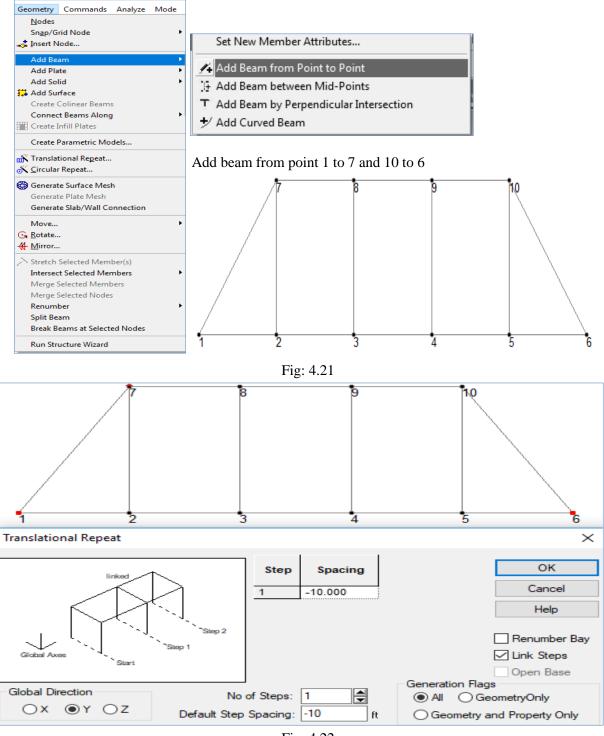



Fig: 4.20

- 2. General (Define & Assign):
 - 2.1. Property → Section Database → Japanese → I Shape → I 150X75X6 → Material = STEEL → Add → Close then for Assign select the property and click on Assign to View → Assign → Yes. (Fig: 4.23)
 - 2.2. Support \rightarrow Create \rightarrow Fixed \rightarrow Add \rightarrow Now for Assign click on the Support type \rightarrow Select the Support point in Truss \rightarrow Assign to Selected Nodes \rightarrow Assign \rightarrow Yes.

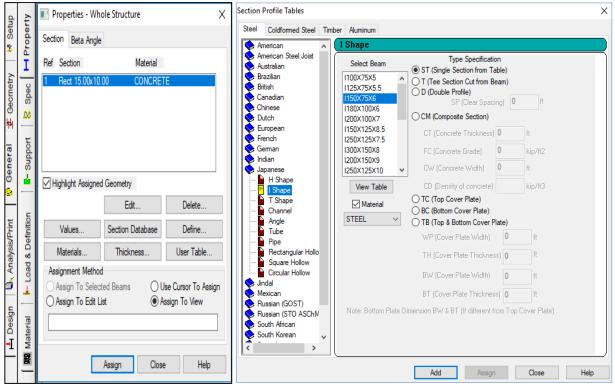
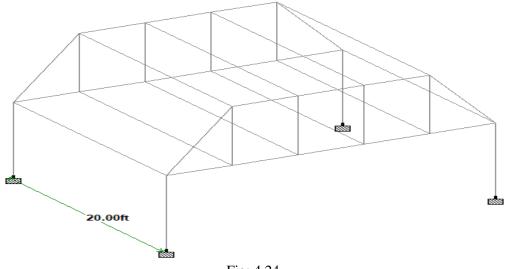



Fig: 4.23

2.3 Now Select the whole structure (in View window) by using beam cursor →Translational Repeat → Global Direction =Z → No. of Steps = 1 → Spacing= 20 → Click on Link Steps → OK and then delete extra beams (Fig: 4.24)

- 2.4 Load & Definitions → Load Cases Details → Add → Loading Type = Dead → Title = Dead Load or DL → Add → Loading Type = Live → Title = Live Load or LL → Add → Close. (Fig: 4.25)
 - DL →Add →Self weight →Direction = Y, Factor = -1→Add →Close. Then SELFWEIGHT Y-1 →Assign To View →Assign →Yes. (Fig: 4.26)

- For Given loads: Again Live Load or LL →Add →Nodal Load → Fy = -20 kip →Add →
 Fy = -40 kip→Add →Close, then click on defined force and select the required Nodes →
 Assign to selected Nodes →Assign →Yes. (Fig: 4.27)
- 2.5 Load Combination: Load Cases Details \rightarrow Add \rightarrow Define Combinations \rightarrow Name = DL+LL \rightarrow Default ai = 1, then select DL, LL and click on >> to send right side from left side. (Fig: 4.28)

Load Cases Details	Primary Load Generation Define Combinations Auto Load Combination	Primary	
		Number 1 Loading Type : Dead	v
		Title DL	
New Add Edit Delete Toggle Load Assignment Method Assign To Selected Entities Image: Selected Entities Image: Selected Entities Assign To View Assign To Edit List Assign To Edit List Assign Close Help			Add Close Help

Fig: 4.25

Add New : Load Items		
	Colfusiabt Lood	Load & Definition X
 Selfweight Selfweight Load Nodal Load Member Load Physical Member Load Area Load Floor Load Plate Loads Surface Loads 	Selfweight Load	Definitions Load Cases Details Load Cases Details SELFWEIGHT Y-1 Load Envelopes
 Solid Loads Solid Loads Temperature Loads Seismic Loads Time History Wind Load Snow Load Response Spectra Repeat Load Frequency 		New Add Edit Delete Toggle Load Assignment Method Assign To Selected Beams/Plates Use Cursor To Assign Assign To Selected Beams/Plates O Use Cursor To Assign Assign To Edit List Assign Close Help

Fig: 4.26

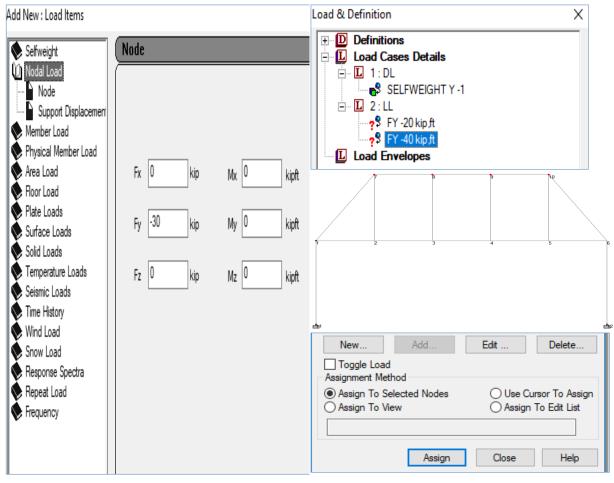


Fig: 4.27

Add New : Load Cases	
Primary	Define Combinations
Load Generation Combinations Auto Load Combination	Load No: 3 Name : DL+LL Type Image: SRSS General Format : $a_i * L_i$ SRSS Factor Image: SRSS Component ABS Default Image: SRSS Available Load Cases: Load Combination Definition: [S] = SRSS Image: SRSS Load Cases Factor Image: SRSS Image: SRSS Image: SRSS Image: SRSS Image: SRSS Image: SRSS
	Add Close

- 3 Analysis and Result:
 - From left side click on Analysis/Print \rightarrow Static Check or All \rightarrow Add \rightarrow Close
 - At Menu bar →Analyze →Run Analysis →Go to post processing mode →Done →Selected load cases = DL+LL →Apply →OK. (Fig: 4.29 & Fig: 4.30)
 - For Support Reactions use node cursor and double click on the support point →Reactions. Then get the Table for all Support Reactions.
 - For Beam Forces: From left side click on Beam → from Graphs find out Axial force by clicking on required Beam.

Analy	ze Mode Window Help	
	m Analysis Citile15 @ □ ♠ ∰ ++ № 1 ++ № 1% ?	· 🖌 🥂 🕅 🔀 🔗 🕯
	STAAD Analysis and Design	×
сге	<pre>++ Processing Global Stiffness Matrix. ++ Finished Processing Global Stiffness Matrix. ++ Processing Triangular Factorization. ++ Finished Triangular Factorization. ++ Calculating Joint Displacement. ++ Gloulating Member Forces. ++ Analysis Successfully Completed ++ ++ Creating Displacement File (DSP) ++ Creating Reaction File (REA) ++ Calculating Section Forces1-110. ++ Calculating Section Forces3 ++ Calculating Section Forces File (BMD) ++ Creating Section Displace File (SCN) ++ Done.</pre>	13:47:32 150 ms 13:47:33 160 ms 13:47:33 13:47:33 13:47:33 13:47:33 13:47:33 13:47:33 13:47:33 13:47:33 13:47:34
	0 Error(s), 2 Warning(s), 0 Note(s) ++ End STAAD.Pro Run Elapsed Time = 4 Secs	
	<	B-2.anl ¥
2	 View Dutput File Go to Post Processing Mode Stay in Modeling Mode 	Done

Fig: 4.29

Results Setup		\times
Loads Range Result View	Options	
Defined Envelopes Envelope of Load Cases	∽ s in Selected List	
Load Cases Available:	Selected:	
1 DL 2 LL	>> 3 DL+LL	
	<	
	OK Apply Help	

Fig: 4.30

CHAPTER-V

MULTI STORIED BUILDING FRAME UNDER ALLLOADS

Objective: Analyze the following 7-Storied residential building under all loads and Columns, Beams forces and support reactions for foundation design.

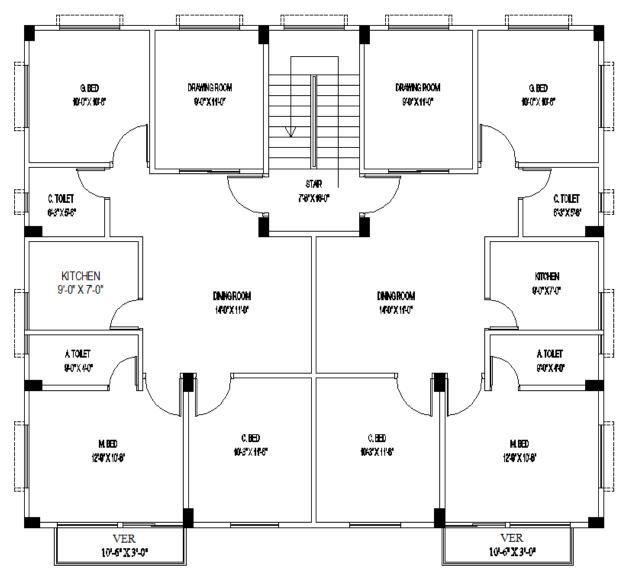
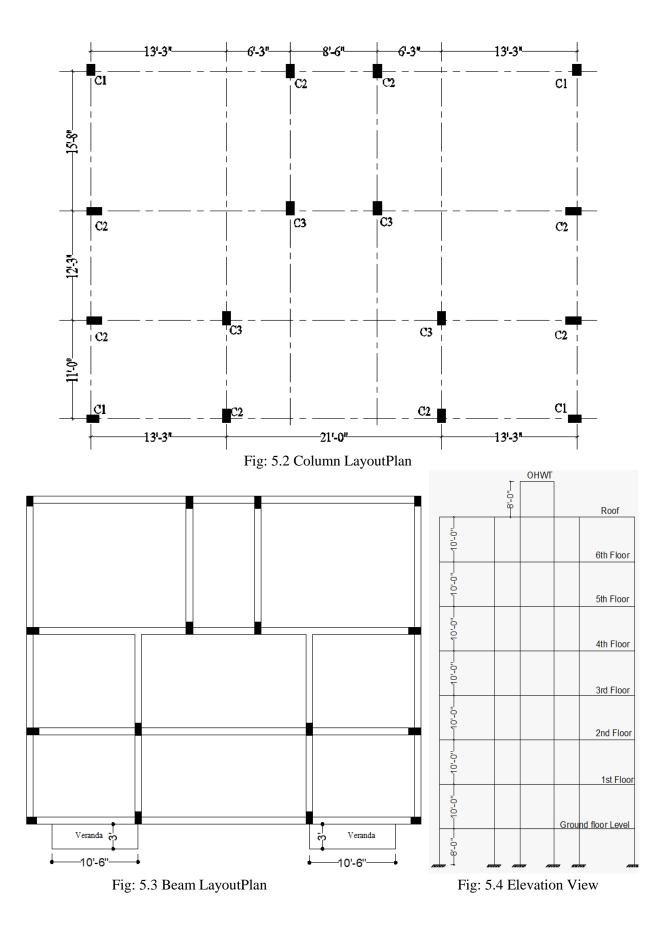



Fig: 5.1 Typical Floor Plan

Properties:	Load Definitions:
Column: C1= 12"X15"	1. Seismic Definition: (Dhaka zone)
C2=12"X18"	EQx & EQz
C3=12"X20"	2. Wind Definitions: (for Dhaka)
	Wx & Wz
Beam: GB = 10"X18"	*Wind speed for Dhaka zone = 210 km/hr = 130 mile/hr
FB = 10"X20"	3. Dead Load:
Varenda Beam: 6" X 6"	Self weight (Factor=1)
	Slab weight = 75 psf (For slab thickness= 6")
• All supports are fixed support	Floor Finish (FF) = 30 psf
• Bottom story height = 8'-0"	Partition wall load (PW) = 25 psf
• Typical story height = 10'-0"	Wall load on beams (W) = 416 Ib/ft (for 5" brick wall)
• Top story for lift & stair = 8'-0"	4. Live Load: $LL = 40 \text{ psf}$
	Load Combinations:
	UFL = DL + LL
	FDL = 1.2*DL + 1.6*LL
	FDLEQx = 0.9*DL+1.2*LL+1.32*EQx
	FDLEQz = 0.9*DL+1.2*LL+1.32*EQz
	FDLWx = 0.9*DL+1.2*LL+1.2*Wx
	FDLWz = 0.9*DL+1.2*LL+1.2*Wz

Table 5.1 Geometry and Loads:

Procedure:

- 1. Geometry (Model creating):
 - 1.1 Open the STAAD Pro. software and click on New Project →Space →File name →Location (select your file location to save) →Length unit select Foot and KiloPound →Next →Add Beam →Finish.
 - 1.2 Column & Beam Layout:
 - 1.2.1 Close the default Grid system and at the right side input your first node point coordinates as (X Y Z)=(0 0 0) (Figure: 5.2). After than select the node by using node cursor →Geometry →Translational Repeat →Select Global Direction = X → No of Steps = 3 → now write down the column spacing from your Column Layout Plan as (Step1 =19.5, Step2 =8.5, Step3 =19.5) →Link Steps →OK. (Figure: 5.2)
 - 1.2.2 After than select the total beam by using Beam cursor →Geometry →Translational Repeat →Select Global Direction = Z → No of Steps = 1 → now write down the column spacing from your Column Layout Plan as (Step1 =15.667 ft) →Link Steps →OK. (Figure: 5.3)
 - 1.2.3 Now select the column node no 5 & 8 from the 2nd row →Geometry →Translational Repeat →Select Global Direction = Z → No of Steps =2 → now write down the column spacing from your Column Layout Plan as (Step1 =12.25, Step2 =11) →OK (Figure: 5.4). Again select the column node no 9 & 10 by using node cursor →Geometry →Translational Repeat →Select Global Direction = X → No of Steps =3 → now write down the column spacing from your Column Layout Plan as (Step1 =13.25, Step2 =21, Step1 =13.25) →OK (Figure: 5.5)

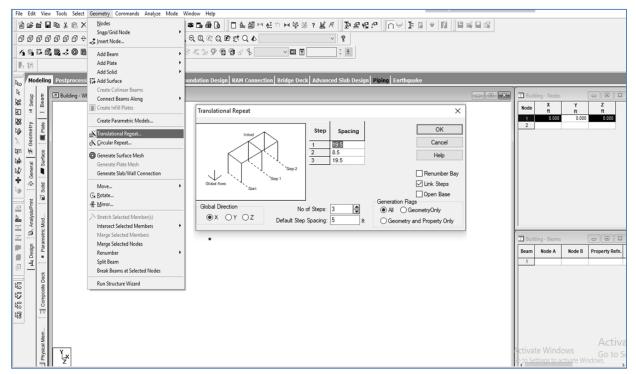


Fig: 5.2

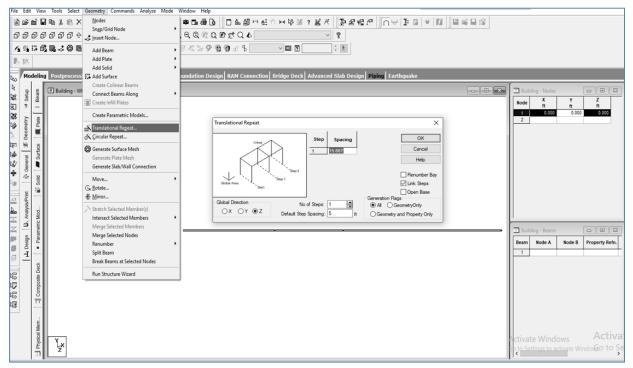


Fig: 5.3

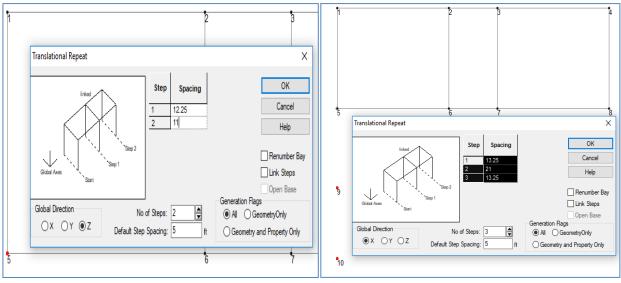


Fig: 5.4

Fig: 5.5

- 1.2.4 For create beam layout: Go to Geometry →Add Beam →Add Beam from Point to Point and then connect the nodes points each other as the given Beam layout plan. Again for interesting beam go to Geometry →Add Beam →Add Beam by Perpendicular Intersection. (Figure: 5.6 and 5.7)
- 1.2.5 Veranda Create: Now select the node no 12 \rightarrow Geometry \rightarrow Translational Repeat \rightarrow Select Global Direction = X \rightarrow No of Steps =1 \rightarrow now write down the Veranda length as (Step1 = -10.5) \rightarrow OK (Figure: 5.8).
- 1.2.6 Again select the beam from node no 12 to 19 by using beams cursor →Geometry →Translational Repeat →Select Global Direction = Z → No of Steps =1 → now write down the now write down the Veranda width as (Step1 =3) →Click on Link Steps →OK (Figure: 5.9). And similarly create another Veranda.
- 1.2.7 Now Story Create: Select whole structure →Geometry →Translational Repeat →Select Global Direction = Y→ No of Steps =8(7 stoy+1 is bottom story for base)→ Default Step Spacing = 10(Typical story height) and Step1 = 8) →Click on Link Steps →OK (Figure: 5.10).
- 1.2.8 Then delete the unnecessary columns from veranda and inside of the plan by selecting them (use Delete button from keyboard).

Geometry Commands Analyze	Mode \	Window	Help													
Nodes		laas ⊓⊒	• 🚳 🖸	እ 📗	E 🗠	≜] +-+ .	≜I †† I	HH 168	5%	? ⊫€	R	11175	1 <i>2</i>	2	a [$\overline{\cap} \forall \forall$
Sn <u>a</u> p/Grid Node	•	L							-21	- 0.00						1 1 ~
. 👌 Insert Node		.Q.@	ર જ લ	QP	2 * Q						\sim	Ţ				
Add Beam	•	Set P	New Me	mber A	Attributes	i			2			* ±				
Add Plate	•	🖊 Add	Beam fr	rom Po	oint to Po	int										
Add Solid	•				n Mid-Po					-	-					1 .
👬 Add Surface		T Add	Beam b	y Perp	endicula	r Intersec	tion		eck	Adva	nced	Slab	Desi	gn	Piping	Earth
Create Colinear Beams			Curved													
Connect Beams Along	▶∟	<u> </u>							J							
Create Infill Plates																
Create Parametric Models																
Translational Repeat						2			3							4
S Circular Repeat																
Generate Surface Mesh																
Generate Plate Mesh																
Generate Slab/Wall Connection																
Move	•	1														
🕞 Rotate																
- Mirror																
Stretch Selected Member(s)		<u> </u>				6										
Intersect Selected Members	•															
Merge Selected Members																
Merge Selected Nodes																
Renumber	•															
Split Beam																
Break Beams at Selected Nodes																
Run Structure Wizard					1 1						•13					1 5
		-														
	•				•						•14					•
	1 0				12						14					1 6
					E.											

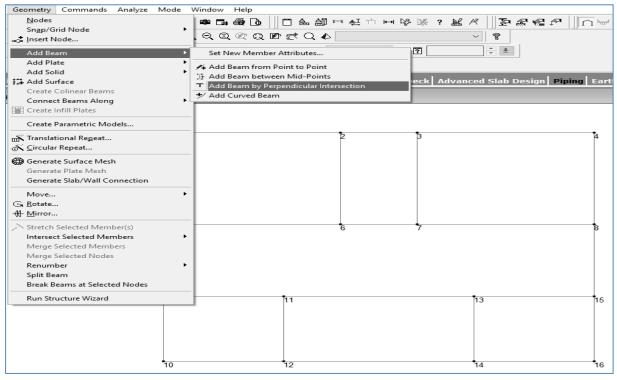


Fig: 5.7

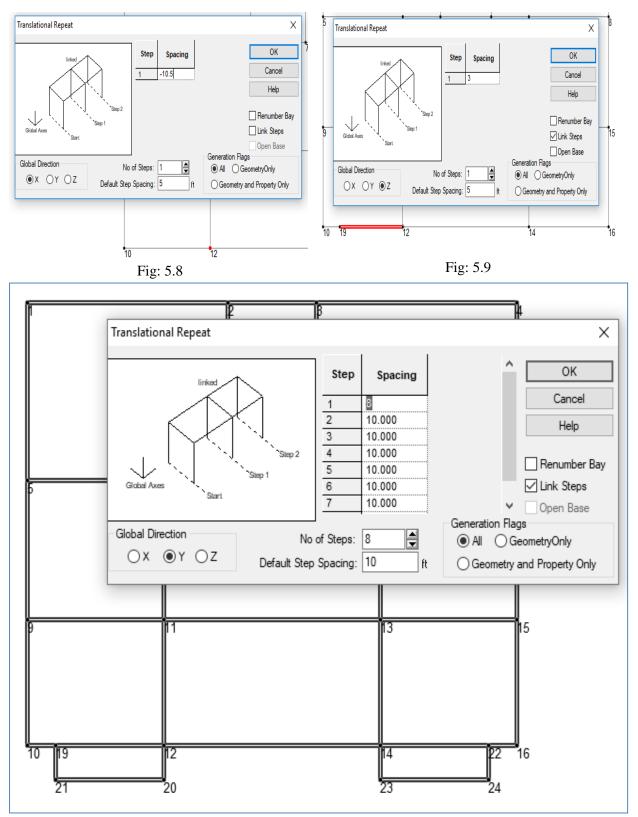


Fig: 5.10

2 General (Define & Assign):

- 2.1 Support Create and Assign:
 - 2.1.1 Click on View from +Z \rightarrow Select the all bottom Story beams \rightarrow Delete \rightarrow Ok \rightarrow Yes
 - 2.1.2 From left side Click on General \rightarrow Support \rightarrow Create \rightarrow Fixed \rightarrow Add. (Fig: 5.11)
 - 2.1.3 Select S2 Support 2 →Select all bottom Nodes by using Node Cursor →Assign to Selected Nodes →Assign →Yes. (Fig: 5.12)

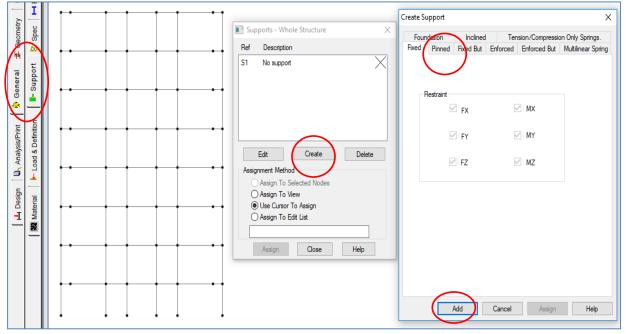


Fig: 5.11

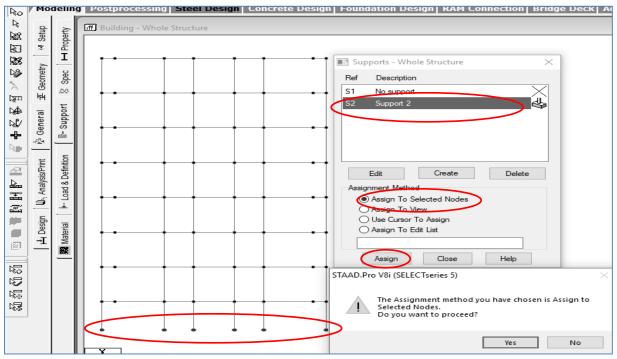


Fig: 5.12

- 2.2 Property (Beam, Column creates):
 - 2.2.1 Same processes follow for other columns and Beams.
 - 2.2.2 Column & Beam Define: From left side Click on General \rightarrow Property \rightarrow Define \rightarrow Rectangle \rightarrow YD=1.25 ft, ZD=1 ft (For column C1) \rightarrow Add. (Fig: 5.13)
 - 2.2.3 Same processes follow for other columns and Beams.
 - 2.2.4 (Here YD is depth of Beams and columns and ZD is width of Beams and columns)
- 2.3 Column & Beam Assign: Click on each of the property →Select the member from view as your given layout →Assign to selected beams →Assign →Yes.
- 2.4 Load & Definition: In STADD Pro. must be follow the sequence as 1. Earthquake, 2. Wind load, then 3. Dead load and 4. Live load.
 - 2.4.1 Earthquake Definition: Load & Definition → Definitions →Seismic Definitions →Add →Type: UBC 1994 →Then write down the parameter values as your given data building category →Add→Self weight Factor = 1→Add Then click on Floor Weights →Pressure = -0.17(Slab weight 75+FF 30+ PW 25+LL 40 =170 psf= 0.17 ksf) and Y range 0 to 78 →Add →Close. (Fig: 5.14 and Fig: 5.15)
 - 2.4.2 Wind Load Definitions: Load & Definition \rightarrow Definitions \rightarrow Add \rightarrow Type:1, Comments: X-Direction \rightarrow Add \rightarrow TYPE 1, Comments: Z-Direction \rightarrow Add \rightarrow Close.
 - a. TYPE1: X-Direction→Add →Calculate as per ASCE-7→Input the Common data→Apply→Main building data according to your Project→Apply →Ok Add →Close. (Fig: 5.16 and Fig: 5.17)
 - b. Same process follow for TYPE2: Z-Direction.
 - 2.4.3 Load Cases Details:

Add \rightarrow Number =1, Loading Type = Seismic, Title = EQx \rightarrow c Number =2, Loading Type = Seismic, Title = EQz \rightarrow Add Number =3, Loading Type = Wind, Title = WX \rightarrow Add Number =4, Loading Type = Wind, Title = WZ \rightarrow Add Number =5, Loading Type = Dead, Title = DL \rightarrow Add Number =6, Loading Type = Live, Title = LL \rightarrow Add \rightarrow Close

2.4.4 Assign all loads as

- EQx \rightarrow Add \rightarrow Seismic Load \rightarrow X-direction, Factor =1
- EQz \rightarrow Add \rightarrow Seismic Load \rightarrow Z-direction, Factor =1
- WX →Add →Wind Load →X-direction, Factor =1 →Y Range, Minimum =8, Maximum = 78 →Add→Close
- WX →Add →Wind Load →Z-direction, Factor =1 →Y Range, Minimum =8, Maximum = 78 →Add→Close
- DL →Add→Self weight → Factor= -1 →Add→Close →?SELF WEIGHT Y-1
 →Assign to view →Assign
- DL →Add→Floor Load → Pressure (input total floor load with negative sign) then Y Range, Minimum =8, Maximum = 78 →Add→Close
- LL →Add→Floor Load → Pressure (input total floor load with negative sign) then Y Range, Minimum =8, Maximum = 78 →Add→Close
- 2.5 Load Combinations: Load cases details →Add → Define Combinations →Name: DL+LL or other combinations as required then select the load name from the Available load cases and send from left to right side →Input necessary factors →Add→Close. (Fig: 5.21). Otherwise use the Auto Load Combinations according to ACI Code and Add.

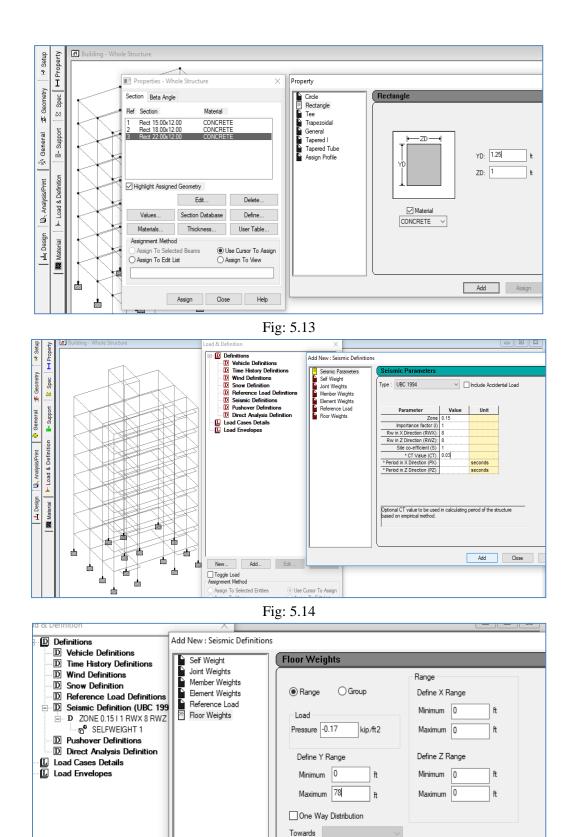


Fig: 5.15

Add

Close

Нε

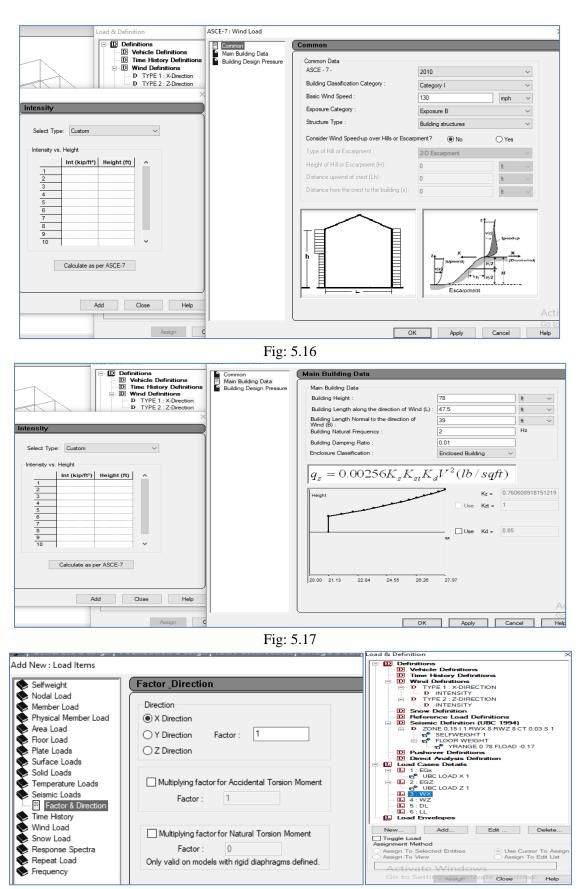
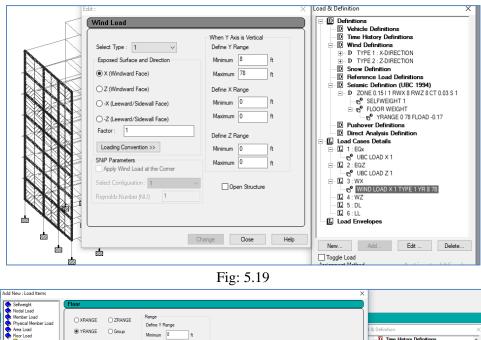



Fig: 5.18

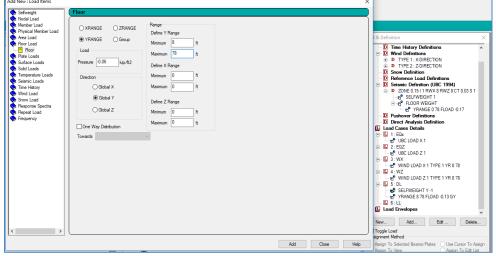


Fig: 5.20

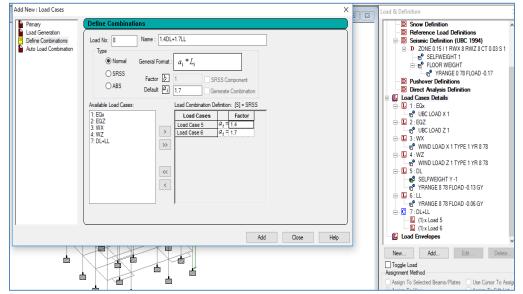


Fig: 5.21

- 3 Analysis and Result:
 - From left side click on Analysis/Print \rightarrow Static Check or All \rightarrow Add \rightarrow Close
 - At Menu bar →Analyze →Run Analysis →Go to post processing mode →Done →Selected load cases = DL+LL →Apply →OK. (Fig: 4.29 & Fig: 4.30)
 - For Support Reactions use node cursor and double click on the support point →Reactions. Then get the Table for all Support Reactions. (Fig: 4.31)
 - For Beam Forces: From left side click on Beam → from Graphs find out Axial force by clicking on required Beam.

Analy	ze Mode Window Help		
R	•••• ₩ ₩ ₩ *** ₩ Ϯ ₩ ₩ % ※ ?	k ~ 🛛 🏚	£ 4
	STAAD Analysis and Design	_	\times
cre	<pre>++ Processing Global Stiffness Matrix. ++ Finished Processing Global Stiffness Matrix. ++ Finished Triangular Factorization. ++ Finished Triangular Factorization. ++ Calculating Joint Displacement. ++ Finished Joint Displacement Calculation. ++ Calculating Member Forces. ++ Analysis Successfully Completed ++ ++ Creating Displacement File (DSP) ++ Creating Reaction File (REA) ++ Calculating Section Forces1-110. ++ Calculating Section Forces3 ++ Creating Section Forces3 ++ Creating Section Displace File (SCN) ++ Done. 0 Error(s), 2 Warning(s), 0 Note(s) ++ End STAAD.Pro Run Elapsed Time = 4 Secs</pre>	13:47:32 150 ms 13:47:32 100 ms 13:47:33 160 ms 13:47:33 13:47:33 13:47:33 13:47:33 13:47:33 13:47:33 13:47:33 13:47:34 13:47:34	
	TT End STARD. TTO Kun Etapsed Time - 4 Sets	B-2.anl	~
	<	>	
2	 View Dutput File Go to Post Processing Mode Stay in Modeling Mode 	Done]

Fig: 5.22

Results Setu	2	×
Loads Ra	nge Result View Options	
	ed Envelopes v lope of Load Cases in Selected List	
- Load Cas	es	
Available	e: Selected:	
1 DL 2 LL	>> 3 DL+LL	
	<	
	OK Apply Help	

Fig: 5.23

🔳 Root	ftruss - No	de		X	E Ro	of truss - Supp	ort Reactions:					11 .	
Node					K		Summary >	Envelope	/				
		X:	0.000				Horizontal	Vertical	Horizontal	Moment			
Node:	12	Y:	-10.000		Node	e L/C	Fx kip	Fy kip	Fz kip	Mx kip-in	My kip-in	Mz kip-in	
- Table		Z:	0.000		12	3 DL+LL	0			0.000	0.000	0.000	
	Nodes		Loads		13	3 DL+LL	0	85	0	0.000	0.000	0.000	
	Supports		Reactions										
			Displacements										
			Unit: ft										
				Close									

Fig: 5.24

**********END*********